• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New research helps explain why the solar wind is hotter than expected

Bioengineer by Bioengineer
April 14, 2020
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Courtesy of Cary Forest / UW-Madison

MADISON, Wis. — When a fire extinguisher is opened, the compressed carbon dioxide forms ice crystals around the nozzle, providing a visual example of the physics principle that gases and plasmas cool as they expand. When our sun expels plasma in the form of solar wind, the wind also cools as it expands through space — but not nearly as much as the laws of physics would predict.

In a study published April 14 in the Proceedings of the National Academy of Sciences, University of Wisconsin-Madison physicists provide an explanation for the discrepancy in solar wind temperature. Their findings suggest ways to study solar wind phenomena in research labs and learn about solar wind properties in other star systems.

“People have been studying the solar wind since its discovery in 1959, but there are many important properties of this plasma which are still not well understood,” says Stas Boldyrev, professor of physics and lead author of the study. “Initially, researchers thought the solar wind has to cool down very rapidly as it expands from the sun, but satellite measurements show that as it reaches the Earth, its temperature is 10 times larger than expected. So, a fundamental question is: Why doesn’t it cool down?”

Solar plasma is a molten mix of negatively charged electrons and positively charged ions. Because of this charge, solar plasma is influenced by magnetic fields that extend into space, generated underneath the solar surface. As the hot plasma escapes from the sun’s outermost atmosphere, its corona, it flows through space as solar wind. The electrons in the plasma are much lighter particles than the ions, so they move about 40 times faster.

With more negatively charged electrons streaming away, the sun takes on a positive charge. This makes it harder for the electrons to escape the sun’s pull. Some electrons have a lot of energy and keep traveling for infinite distances. Those with less energy can’t escape the sun’s positive charge and are attracted back to the sun. As they do, some of those electrons can be knocked off their tracks ever-so-slightly by collisions with surrounding plasma.

“There is a fundamental dynamical phenomenon that says that particles whose velocity is not well aligned with the magnetic field lines are not able to move into a region of a strong magnetic field,” Boldyrev says. “Such returning electrons are reflected so that they stream away from the sun, but again they cannot escape because of the attractive electric force of the sun. So, their destiny is to bounce back and forth, creating a large population of so-called trapped electrons.”

In an effort to explain the temperature observations in the solar wind, Boldyrev and his colleagues, UW-Madison physics professors Cary Forest and Jan Egedal looked to a related, but distinct, field of plasma physics for a possible explanation.

Around the time scientists discovered solar wind, plasma fusion researchers were thinking of ways to confine plasma. They developed “mirror machines,” or plasma-filled magnetic field lines shaped as tubes with pinched ends, like bottles with open necks on either end.

As charged particles in the plasma travel along the field lines, they reach the bottleneck and the magnetic field lines are pinched. The pinch acts as a mirror, reflecting particles back into the machine.

“But some particles can escape, and when they do, they stream along expanding magnetic field lines outside the bottle. Because the physicists want to keep this plasma very hot, they want to figure out how the temperature of the electrons that escape the bottle declines outside this opening,” Boldyrev says. “It’s very similar to what’s happening in the solar wind that expands away from the sun.”

Boldyrev and colleagues thought they could apply the same theory from the mirror machines to the solar wind, looking at the differences in the trapped particles and those that escape. In mirror machine studies, the physicists found that the very hot electrons escaping the bottle were able to distribute their heat energy slowly to the trapped electrons.

“In the solar wind, the hot electrons stream from the sun to very large distances, losing their energy very slowly and distributing it to the trapped population,” Boldyrev says. “It turns out that our results agree very well with measurements of the temperature profile of the solar wind and they may explain why the electron temperature declines with the distance so slowly,” Boldyrev says.

The accuracy with which mirror machine theory predicts solar wind temperature opens the door for using them to study solar wind in laboratory settings.

“Maybe we’ll even find some interesting phenomena in those experiments that space scientists will then try to look for in the solar wind,” Boldyrev says. “It’s always fun when you start doing something new. You don’t know what surprises you’ll get.”

###

Sarah Perdue, [email protected], 608-262-3051

CONTACT: Stas Boldyrev, [email protected]

READ ONLINE: https://news.wisc.edu/new-research-helps-explain-why-the-solar-wind-is-hotter-than-expected/

DOWNLOAD IMAGES: https://uwmadison.box.com/v/solar-wind-temperature

Media Contact
Stas Boldyrev
[email protected]

Original Source

https://news.wisc.edu/new-research-helps-explain-why-the-solar-wind-is-hotter-than-expected/

Tags: AstronomyAstrophysicsAtmospheric ScienceChemistry/Physics/Materials SciencesSpace/Planetary ScienceStars/The Sun
Share12Tweet8Share2ShareShareShare2

Related Posts

Michigan Startup Innovates Clothing Labels to Enhance Recycling and Brand Authentication

Michigan Startup Innovates Clothing Labels to Enhance Recycling and Brand Authentication

November 5, 2025
Kono Honored with American Physical Society’s Isakson Prize

Kono Honored with American Physical Society’s Isakson Prize

November 5, 2025

Resilient Order Emerges from Chasing and Splashing

November 5, 2025

Breakthrough in Attosecond Plasma Lens Technology Unveiled

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Impact of Resistance Training on Sarcopenic Seniors

New Study Reveals Disparities in Cancer Care Quality Among Incarcerated Individuals

AI Accelerates Antibody Design to Combat Emerging Viruses, According to New Study

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.