• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Sunday, January 29, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New research furthers case for exercise promoting youthfulness

Bioengineer by Bioengineer
January 18, 2023
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A recent paper published in the Journal of Physiology deepened the case for the youthfulness-promoting effects of exercise on aging organisms, building on previous work done with lab mice nearing the end of their natural lifespan that had access to a weighted exercise wheel. 

Kevin Murach

Credit: University Relations

A recent paper published in the Journal of Physiology deepened the case for the youthfulness-promoting effects of exercise on aging organisms, building on previous work done with lab mice nearing the end of their natural lifespan that had access to a weighted exercise wheel. 

The densely detailed paper, “A molecular signature defining exercise adaptation with ageing and in vivo partial reprogramming in skeletal muscle,” lists a whopping 16 co-authors, six of whom are affiliated with the U of A. The corresponding author is Kevin Murach, an assistant professor in the U of A’s Department of Health, Human Performance and Recreation, and the first author is Ronald G. Jones III, a Ph.D. student in Murach’s Molecular Muscle Mass Regulation Laboratory.

For this paper, the researchers compared aging mice that had access to a weighted exercise wheel with mice that had undergone epigenetic reprogramming via the expression of Yamanaka factors.

The Yamanaka factors are four protein transcription factors (identified as Oct3/4, Sox2, Klf4 and c-Myc, often abbreviated to OKSM) that can revert highly specified cells (such as a skin cell) back to a stem cell, which is a younger and more adaptable state. The Nobel Prize in Physiology or Medicine was awarded to Dr. Shinya Yamanaka for this discovery in 2012. In the correct dosages, inducing the Yamanaka factors throughout the body in rodents can ameliorate the hallmarks of aging by mimicking the adaptability that is common to more youthful cells.

Of the four factors, Myc is induced by exercising skeletal muscle. Myc may serve as a naturally induced reprogramming stimulus in muscle, making it a useful point of comparison between cells that have been reprogrammed via over expression of the Yamanaka factors and cells that have been reprogrammed through exercise — “reprogramming” in the latter case reflecting how an environmental stimulus can alter the accessibility and expression of genes. 

The researchers compared the skeletal muscle of mice who had been allowed to exercise late in life to the skeletal muscle of mice that overexpressed OKSM in their muscles, as well as to genetically modified mice limited to the overexpression of just Myc in their muscles.

Ultimately, the team determined that exercise promotes a molecular profile consistent with epigenetic partial programming. That is to say: exercise can mimic aspects of the molecular profile of muscles that have been exposed to Yamanaka factors (thus displaying molecular characteristics of more youthful cells). This beneficial effect of exercise may in part be attributed to the specific actions of Myc in muscle.

While it would be easy to hypothesize that someday we might be able to manipulate Myc in muscle to achieve the effects of exercise, thus sparing us the actual hard work, Murach cautions that would be the wrong conclusion to draw. 

First, Myc would never be able to replicate all the downstream effects exercise has throughout the body. It is also the cause of tumors and cancers, so there are inherent dangers to manipulating its expression. Instead, Murach thinks manipulating Myc might best be employed as an experimental strategy to understand how to restore exercise adaptation to old muscles showing declining responsiveness. Possibly it could also be a means of supercharging the exercise response of astronauts in zero gravity or people confined to bed rest who only have a limited capacity for exercise. Myc has many effects, both good and bad, so defining the beneficial ones could lead to a safe therapeutic that could be effective for humans down the road.

Murach sees their research as further validation of exercise as a polypill. “Exercise is the most powerful drug we have,” he says, and should be considered a health-enhancing — and potentially life-extending — treatment along with medications and a healthy diet.

Murach and Jones’ co-authors at the U of A included exercise science professor Nicholas Greene, as well as contributing researchers Francielly Morena Da Silva, Seongkyun Lim and Sabin Khadgi.



Journal

The Journal of Physiology

DOI

10.1113/JP283836

Method of Research

Experimental study

Subject of Research

Animals

Article Title

A molecular signature defining exercise adaptation with ageing and in vivo partial reprogramming in skeletal muscle

Article Publication Date

19-Dec-2022

COI Statement

Yuan Wen is the founder of MyoAnalytics LLC. Stanley J. Watowich is the founder of Ridgeline Therapeutics

Share12Tweet7Share2ShareShareShare1

Related Posts

The two strategies that mutant measles viruses use to infect the brain

Measles virus ‘cooperates’ with itself to cause fatal encephalitis

January 27, 2023
Ólafsdóttir & Lind

Testing a immunological drug as a new treatment for early type 1 diabetes

January 27, 2023

Study shows FDA-approved TB regimen may not work against the deadliest form of TB due to multidrug-resistant strains

January 27, 2023

Non-invasive neurotechnology reduces symptoms of insomnia and improves autonomic nervous system function

January 27, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

World-first guidelines created to help prevent heart complications in children during cancer treatment

Simulations reproduce complex fluctuations in soft X-ray signal detected by satellites

Measles virus ‘cooperates’ with itself to cause fatal encephalitis

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In