• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New research finding gives valleytronics a boost

Bioengineer by Bioengineer
October 28, 2019
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

UC Riverside-led team overcomes a stumbling block in this relatively new technology

IMAGE

Credit: Stan Lim, UC Riverside.

RIVERSIDE, Calif. — An international research team led by physicists at the University of California, Riverside, has revealed a new quantum process in valleytronics that can speed up the development of this fairly new technology.

Valleytronics, a portmanteau of “valley” and “electronics,” uses local energy minima — or valleys — in the electronic band structure of semiconductors. Current semiconductor technology uses electronic charge or spin to store and process information. In some semiconductors, however, valleys of the electrons are used to encode, process, and store information. Valleytronic systems have the potential to offer information processing schemes that are superior to charge- and spin-based semiconductor technologies.

The UC Riverside-led research team focused on monolayer tungsten diselenide (WSe2), a two-dimensional semiconductor with two distinct electronic valleys. Excited electrons tend to relax and accumulate in one of the valleys to acquire a valley index (K or K’). The valley indices can be used to represent 1 and 0 to encode information — just as electric charge is used in current technology.

Excitons and trions can also occupy the valleys in monolayer WSe2 and be used to transmit valley information. An exciton is a quantum bound state of an electron and an electron hole. A trion is a quantum bound state of three charged particles. Monolayer WSe2 hosts bright and dark excitons or trions with different spin configurations; bright decay rapidly into light, while dark decay slowly into light.

“Development of valleytronics requires stable valley states and easy identification of the valley indices,” said Chun Hung “Joshua” Lui, an assistant professor in the Department of Physics and Astronomy at UC Riverside, who led the research. “Dark excitons and trions in monolayer WSe2 have much longer lifetime and better valley stability than the common bright excitons and trions. The dark excitons and trions, therefore, serve as excellent candidates for valleytronic applications.”

Lui explained that until now no method could read the valley indices of the dark excitons and trions because their light emission from either valley has exactly the same energy and polarization, making the two valleys indistinguishable from each other. Lui’s research team has now overcome this obstacle by identifying a measurable physical quantity that can distinguish the two valley indices of dark excitons and trions.

“We observed a new decay process of dark excitons and trions in monolayer WSe2, which allows us to identify their valley indices,” Lui said. “A dark exciton or trion can decay into a pair of photon and phonon with a distinctive valley signature.”

A photon is a quantum of an electromagnetic wave. It can have linear or chiral polarization when the electromagnetic field oscillates or rotates. The rotational direction of the electromagnetic field determines whether a chiral photon is right-handed or left-handed. Similarly, a phonon is a quantum of atomic vibration in the material. Atomic vibration usually involves linear oscillation of atoms. But in some special cases, the atoms can rotate to produce the so-called chiral phonons. The atomic rotation direction determines whether a chiral phonon is right-handed or left-handed.

“We found that the dark exciton in the K valley decays into a right-handed photon and a left-handed phonon, whereas the dark exciton in the opposite K’ valley decays into a left-handed photon and a right-handed phonon,” Lui said. “The handedness of the emitted photon is a clear signature of the valley indices of the dark excitons and trions.”

Lui added that the ability to read the dark-state valleys could facilitate the exploration of dark-state valley dynamics and applications in valleytronic technology.

###

The study appears in Physical Review Research, an open-access journal.

Lui was joined in the study by Erfu Liu, a postdoctoral researcher in Lui’s lab and the first author of the research paper, and graduate student Jeremiah van Baren of UC Riverside; Takeshi Taniguchi and Kenji Watanabe of the National Institute for Materials Science, Japan; and Yia-Chung Chang of the Research Center for Applied Sciences, Academia Sinica, Taiwan.

The University of California, Riverside (http://www.ucr.edu) is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California’s diverse culture, UCR’s enrollment is more than 24,000 students. The campus opened a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of almost $2 billion. To learn more, email [email protected].

Media Contact
Iqbal Pittalwala
[email protected]
951-827-6050

Tags: Atomic/Molecular/Particle PhysicsChemistry/Physics/Materials SciencesElectrical Engineering/ElectronicsMaterialsMolecular PhysicsOpticsTechnology/Engineering/Computer ScienceTelecommunications
Share12Tweet8Share2ShareShareShare2

Related Posts

Neuroprosthetics Revolutionize Gut Motility and Metabolism

Neuroprosthetics Revolutionize Gut Motility and Metabolism

August 10, 2025
blank

Corticosterone and 17OH Progesterone in Preterm Infants

August 10, 2025

Multivalent mRNA Vaccine Protects Mice from Monkeypox

August 10, 2025

Bayesian Analysis Reveals Exercise Benefits Executive Function in ADHD

August 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    138 shares
    Share 55 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    77 shares
    Share 31 Tweet 19
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    55 shares
    Share 22 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Neuroprosthetics Revolutionize Gut Motility and Metabolism

Corticosterone and 17OH Progesterone in Preterm Infants

Multivalent mRNA Vaccine Protects Mice from Monkeypox

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.