• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, January 30, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New region-specific cortical communication channel

Bioengineer by Bioengineer
January 19, 2023
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The cortex is at the apex of information processing in the mammalian brain. Interestingly, however, beside olfactory inputs, no fast, precise information reaches the cortex without a thalamic transfer. Indeed, without exception all cortical regions receive thalamic inputs and none of them (olfactory cortex included) is functional without intact thalamic inputs. The interaction between the thalamus and cortex is not unidirectional. Every cortical region not only receives but also sends nerve fibers to the thalamus. This top-down information channel is called corticothalamic pathway. Thus, information between thalamus and cortex does not simply travel one way, rather, information is processed in complex perpetually interacting thalamo-cortico-thalamic loops. The new study by Hadinger et al describes a novel cortico-thalamic connection.

L5 collaterals bearing synaptic terminals in the TRN.

Credit: IEM, Laboratory of Thalamus Research, Nora Hadinger

The cortex is at the apex of information processing in the mammalian brain. Interestingly, however, beside olfactory inputs, no fast, precise information reaches the cortex without a thalamic transfer. Indeed, without exception all cortical regions receive thalamic inputs and none of them (olfactory cortex included) is functional without intact thalamic inputs. The interaction between the thalamus and cortex is not unidirectional. Every cortical region not only receives but also sends nerve fibers to the thalamus. This top-down information channel is called corticothalamic pathway. Thus, information between thalamus and cortex does not simply travel one way, rather, information is processed in complex perpetually interacting thalamo-cortico-thalamic loops. The new study by Hadinger et al describes a novel cortico-thalamic connection.

Connectivity between cortex and thalamus has been intensively studied in the past 100 years and has been regarded canonical. This means that it was thought that there were no qualitative regional differences in the organization of the cortico-thalamic pathways despite the fact that there are obvious differences in the precise nature of information processed in various cortical areas (e.g. sensory, motor, emotional etc). In their new study Hadinger et al., shows that the frontal cortical regions display a specific cortico-thalamic innervation pattern which are absent in other cortical areas demonstrating that the cortico-thalamic pathway is non-canonical. The new, region selective cortico-thalamic pathway targeted the enigmatic thalamic reticular nucleus (TRN) which contains only inhibitory neurons.

There is no proper neuronal activity in the brain without precisely organized inhibitory activity. In the vast majority of diseases affecting the brain the balance and timing of excitation and inhibition is perturbed. Thalamus is not an exception. The main controller of thalamic inhibition is TRN. Inhibitory axon terminals of TRN densely innervate all thalamic nuclei. What controls TRN, controls thalamus as well. TRN forms a thin shell around the thalamus and its distinct sectors project to different thalamic regions in a nice topographic order. Since specific thalamic nuclei project to specific cortical regions activating a specific TRN sector will result in governing the activity in a well defined cortico-thalamic loop. And this is exactly what Hádinger et al., found. TRN cells targeted by frontal cortical inputs innervated those part of the thalamus which projected back to frontal cortex closing the cortico-thalamo-cortical loop.

Inputs maybe weak or strong, few or numerous. According to Hádinger et al., TRN receives many corticothalamic inputs, sometimes even from different cortical regions. The data also shows that TRN is especially sensitive to the synchronicity of its cortical inputs. Increasing cortical synchrony will gradually alter the timing and amount of TRN activity. This will be pivotal to control the response of thalamic cells to synchronous or hypersynchronous cortical activity, like epileptic seizures.

In summary the data suggest that the properties of information processing in thalamocortical loops involved in higher order cognitive functions are qualitatively different from those of other (e.g., sensory) loops. The new cortico-thalamic pathway targeting TRN will help to understand the neuronal basis of normal cognition and chronic neurological and neuropsychiatric diseases linked to frontal cortex including Parkinson’ disease, schizophrenia, chronic pain, and epilepsy, and it opens up novel avenues to study cortico-thalamic interactions.

 

 

 



Journal

Nature Neuroscience

DOI

10.1038/s41593-022-01217-z

Method of Research

Experimental study

Subject of Research

Not applicable

Article Title

Region-selective control of the thalamic reticular nucleus via cortical layer 5 pyramidal cells

Article Publication Date

22-Dec-2022

COI Statement

The funding institutions had no role in the conceptualization, design, data collection, analysis, decision to publish, or preparation of the manuscript. The authors declare no competing interests.

Share12Tweet8Share2ShareShareShare2

Related Posts

HIV particles

New vaccine platform could ease development, delivery of virus-fighters

January 30, 2023
Timeseries of COVID19 deaths

COVID-19 is a leading cause of death in children and young people in the United States

January 30, 2023

Study unravels interplay between sleep, chronic pain and spinal cord stimulation

January 30, 2023

Scientists eye role of a fatty acid deficiency in sight-robbing condition

January 30, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    64 shares
    Share 26 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    58 shares
    Share 23 Tweet 15
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

KAIST presents a fundamental technology to remove metastatic traits from lung cancer cells​

Mixing between species reduces vulnerability to climate change

NSF’s NCSES releases report on diversity trends in STEM workforce and education

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In