• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, July 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New radio receiver opens wider window to radio universe

Bioengineer by Bioengineer
July 8, 2021
in Science News
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Osaka Prefecture University/NAOJ

Researchers have used the latest wireless technology to develop a new radio receiver for astronomy. The receiver is capable of capturing radio waves at frequencies over a range several times wider than conventional ones, and can detect radio waves emitted by many types of molecules in space at once. This is expected to enable significant progresses in the study of the evolution of the Universe and the mechanisms of star and planet formation.

Interstellar molecular clouds of gas and dust provide the material for stars and planets. Each type of molecule emits radio waves at characteristic frequencies and astronomers have detected emissions from various molecules over a wide range of frequencies. By observing these radio waves, we can learn about the physical properties and chemical composition of interstellar molecular clouds. This has been the motivation driving the development of a wideband receiving system.

In general, the range of radio frequencies that can be observed simultaneously by a radio telescope is very limited. This is due to the characteristics of the components that make up a radio receiver. In this new research, the team of researchers in Osaka Prefecture University (OPU) and the National Astronomical Observatory of Japan (NAOJ) has widened the bandwidth of various components, such as the horn that brings radio waves into the receiver, the waveguide (metal tube) circuit that propagates the radio waves, and the radio frequency converter. By combining these components into a receiver system, the team has achieved a range of simultaneously detectable frequencies several times larger than before. Furthermore, this receiver system was mounted on the OPU 1.85-m radio telescope in NAOJ’s Nobeyama Radio Observatory, and succeeded in capturing radio waves from actual celestial objects. This shows that the results of this research are extremely useful in actual astronomical observations.

“It was a very emotional moment for me to share the joy of receiving radio waves from the Orion Nebula for the first time with the members of the team, using the receiver we had built,” comments Yasumasa Yamasaki, an OPU graduate student and the lead author of the paper describing the development of the wideband receiver components. “I feel that this achievement was made possible by the cooperation of many people involved in the project.”

When compared to the receivers currently used in the Atacama Large Millimeter/submillimeter Array (ALMA), the breadth of frequencies that can be simultaneously observed with the new receivers is striking. To cover the radio frequencies between 211 and 373 GHz, ALMA uses two receivers, Band 6 and 7, but can use only one of them at a given time. In addition, ALMA receivers can observe two strips of frequency ranges with widths of 5.5 and 4 GHz using the Band 6 and 7 receivers, respectively. In contrast, the new wideband receiver can cover all the frequencies with a single unit. In addition, especially in the higher frequency band, the receiver can detect radio waves in a frequency range of 17 GHz at a time.

“It was a very valuable experience for me to be involved in the development of this broadband receiver from the beginning to successful observation,” says Sho Masui, a graduate student at OPU and the lead author of the research paper reporting the development of the receiver and the test observations. “Based on these experiences, I would like to continue to devote further efforts to the advancement of astronomy through instrument development.”

This wideband technology has made it possible to observe the interstellar molecular clouds along the Milky Way more efficiently using the 1.85-m radio telescope. In addition, widening the receiver bandwidth is listed as one of the high priority items in the ALMA Development Roadmap which aims to further improve the performance of ALMA. This achievement is expected to be applied to ALMA and other large radio telescopes, and to make a significant contribution to enhance our understanding of the evolution of the Universe.

###

These research results are presented in the following two papers published in the Publications of the Astronomical Society of Japan.

S. Masui et al. “Development of a new wideband heterodyne receiver system for the Osaka 1.85 m mm-submm telescope: Receiver development and the first light of simultaneous observations in 230 GHz and 345 GHz bands with an SIS-mixer with 4-21?GHz IF output” https://doi.org/10.1093/pasj/psab046

Y. Yamasaki et al. “Development of a new wideband heterodyne receiver system for the Osaka 1.85?m mm-submm telescope: Corrugated horn and optics covering the 210-375?GHz band” https://doi.org/10.1093/pasj/psab062

Media Contact
Dr. Masaaki Hiramatsu
[email protected]

Original Source

https://www.nao.ac.jp/en/news/science/2021/20210708-alma.html

Related Journal Article

http://dx.doi.org/10.1093/pasj/psab062

Tags: AstronomyAstrophysicsElectrical Engineering/ElectronicsSpace/Planetary ScienceTechnology/Engineering/Computer Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

July 20, 2025

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025

Pathology Multiplexing Revolutionizes Disease Mapping

July 20, 2025

Single-Cell Atlas Links Chemokines to Type 2 Diabetes

July 20, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    59 shares
    Share 24 Tweet 15
  • New Organic Photoredox Catalysis System Boosts Efficiency, Drawing Inspiration from Photosynthesis

    54 shares
    Share 22 Tweet 14
  • IIT Researchers Unveil Flying Humanoid Robot: A Breakthrough in Robotics

    53 shares
    Share 21 Tweet 13
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.