• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 23, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New ‘quantum’ approach helps solve an old problem in materials science

Bioengineer by Bioengineer
April 5, 2021
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists develop a framework based on quantum calculations to solve a long-standing problem in materials science

IMAGE

Credit: Ryo Maezono from JAIST

Ishikawa, Japan – One of the most important classes of problems that all scientists and mathematicians aspire to solve, due to their relevance in both science and real life, are optimization problems. From esoteric computer science puzzles to the more realistic problems of vehicle routing, investment portfolio design, and digital marketing–at the heart of it all lies an optimization problem that needs to be solved.

An appealing technique often used in solving such problems is the technique of “quantum annealing”, a framework that tackles optimization problems by using “quantum tunneling”–a quantum physical phenomenon–to pick out an optimum solution out of several candidate solutions. Ironically, it is in quantum mechanical problems where the technique has found rather scarce application! “Chemists and material scientists, who deal with quantum problems, are mostly unfamiliar with quantum annealing and so do not think to use it. Finding applications of this technique is therefore important for increasing its recognition as a useful method in this domain,” says Prof. Ryo Maezono from Japan Advanced Institute of Science and Technology (JAIST), who specializes in applying information science to the field of materials science.

To that end, Prof. Maezono explored, in a recent study published in Scientific Reports, the phenomenon of ionic diffusion in solids, a topic of great interest in both pure and applied materials science, along with his colleagues, Keishu Utimula, a PhD graduate in materials science from JAIST (in 2020) and lead author of the study, Prof. Kenta Hongo, and Prof. Kousuke Nakano, by applying a framework that combined quantum annealing with ab initio calculations, a method that calculates physical properties of materials without relying on experimental data. “While current ab initio techniques can provide information about diffusion path networks of the ions, it is difficult to map that information into useful knowledge of the diffusion coefficient, a practically relevant quantity,” explains Prof. Maezono.

Specifically, the team looked to calculate the “correlation factor”, a key quantity in the diffusion process, and realized that this could be done by framing the process as a routing optimization problem, which is precisely what the quantum annealing framework is designed to solve! Accordingly, scientists calculated the correlation factor for a simple two-dimensional tetragonal lattice, for which they already knew the exact result, using quantum annealing and a variety of other computational techniques and compared their outputs.

While the evaluated correlation factors were consistent with the analytical result for all the methods employed, all the approaches suffered from limitations due to unrealistic computational costs for large system sizes. However, scientists noted that the computational expense for quantum annealing grew much more slowly in a linear fashion compared to the other techniques, which showed rapid exponential growth.

Prof. Maezono is excited by the finding and is confident that, with sufficient technological advancement, quantum annealing would present itself as the best possible choice for solving problems in materials science. “The problem of ion diffusion in solids is of central importance in building smaller batteries with higher capacity or improving the strength of steel. Our work shows that quantum annealing is effective in solving this problem and can expand the scope of materials science as a whole,” he concludes.

###

Reference

Title of original paper: A Quantum Annealing Approach to Ionic Diffusion in Solids

Journal Scientific Reports
DOI: 10.1038/s41598-021-86274-3

About Japan Advanced Institute of Science and Technology, Japan

Founded in 1990 in Ishikawa prefecture, the Japan Advanced Institute of Science and Technology (JAIST) was the first independent national graduate school in Japan. Now, after 30 years of steady progress, JAIST has become one of Japan’s top-ranking universities. JAIST counts with multiple satellite campuses and strives to foster capable leaders with a state-of-the-art education system where diversity is key; about 40% of its alumni are international students. The university has a unique style of graduate education based on a carefully designed coursework-oriented curriculum to ensure that its students have a solid foundation on which to carry out cutting-edge research. JAIST also works closely both with local and overseas communities by promoting industry-academia collaborative research.

About Professor Ryo Maezono from Japan Advanced Institute of Science and Technology, Japan

Dr. Ryo Maezono is a Professor at the School of Information Science at Japan Advanced Institute of Science and Technology (JAIST) since 2017. He received his Ph.D. degree from the University of Tokyo in 2000 and worked as a researcher at the National Institute for Materials Science, Ibaraki, Japan from 2001-2007. His research interests comprise material informatics and condensed matter theory using high-performance computing. A senior researcher and professor, he has 166 publications with over 1700 citations to his credit.

Funding information

This study was funded by Grant-in-Aid for JSPS Research Fellow (18J12653), KAKENHI grant (JP17K17762), a Grant-in-Aid for Scientific Research on Innovative Areas “Mixed Anion” project (JP16H06439) from MEXT, PRESTO (JPMJPR16NA), the Materials research by Information Integration Initiative (MI2I) project of the Support Program for Starting Up Innovation Hub from Japan Science and Technology Agency (JST), MEXT-KAKENHI (17H05478 and 16KK0097), Toyota Motor Corporation, I-O DATA Foundation, the Air Force Office of Scientific Research (AFOSR-AOARD/FA2386-17-1-4049), and MEXT FLAGSHIP2020 (hp170269, hp170220).

Media Contact
Ryo Maezono
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41598-021-86274-3

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/Micromachines
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

HKU Researchers and Collaborators Capture First “Heartbeat” of Newborn Neutron Star in Distant Cosmic Explosion

September 23, 2025
blank

USTC Unveils Self-Locking Broadband Raman-Electro-Optic Microcomb

September 23, 2025

Uncovering Hidden Harmonic Dynamics in Generalized Snell’s Law: Unlocking Full-Channel Behavior of Gradient Metasurfaces

September 23, 2025

Breaking New Ground in Ultrafast Magnetization Switching

September 23, 2025
Please login to join discussion

POPULAR NEWS

  • Physicists Develop Visible Time Crystal for the First Time

    Physicists Develop Visible Time Crystal for the First Time

    69 shares
    Share 28 Tweet 17
  • Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Beyond Access: Tackling Vaccine Hesitancy in Wealthy Nations

When External Limits Restrict Complex Fetal Care

JMIR Publications and Iowa State University Join Forces to Offer Unlimited Open Access Publishing

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.