• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New protein ‘switch’ could be key to controlling blood-poisoning and preventing death

Bioengineer by Bioengineer
February 25, 2019
in Health
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Scientists at the University of British Columbia have discovered a new protein “switch” that could stop the progression of blood-poisoning, or sepsis, and increase the chances of surviving the life-threatening disease.

Sepsis, an inflammatory disease that arises when the body’s response to an infection injures its own tissues and organs, causes an estimated 14 million deaths every year. In a study published recently in Immunity, researchers examined the role of a protein called ABCF1 in regulating the progression of sepsis.

“Sepsis triggers an uncontrolled chain-reaction of inflammation in the body, leading to tissue damage, organ failure, and death,” said Hitesh Arora, co-lead author of the study who conducted this research as a PhD student at the Michael Smith Laboratories at UBC. “We have discovered that the enzyme ABCF1 acts as a ‘switch’ at the molecular level that can stop this inflammatory chain-reaction and dampen the potential damage.”

Sepsis is hard to diagnose. With no specific course of treatment, management of the disease for the 30 million people who develop it each year relies on infection control and organ-function support.

Scientists do know that sepsis occurs in two phases. The first phase is known as systemic inflammatory response syndrome (SIRS) and results in a “cytokine storm,” a dramatic increase in immune cells such as macrophages, a type of white blood cell. This results in inflammation and a decrease in anti-inflammatory cells, leading to chemical imbalances in blood and damage to tissues and organs. Recovery starts to take place when the body enters a second phase called the endotoxtin tolerance (ET) phase, where the opposite occurs.

Building on previous knowledge of ABCF1 as part of a family of proteins that plays a key role in the immune system, the researchers examined its role in white blood cells during inflammation in a mouse model of sepsis.

They discovered that ABCF1 had the ability to act as a “switch” in sepsis to transition from the initial SIRS phase into the ET phase and regulate the “cytokine storm.” Furthermore, without the ABCF1 switch, immune responses are stalled in the SIRS phase, causing severe tissue damage and death.

The discovery opens up the potential for new treatments for chronic and acute inflammatory diseases, as well as auto-immune diseases.

“Our study may lead to therapies that overcome inflammatory and auto immune disease such as rheumatoid arthritis, inflammatory bowel disease, Crohn’s disease, and ulcerative colitis,” says senior author Wilfred Jefferies, a professor at the Michael Smith Laboratories and departments of medical genetics and microbiology and immunology at UBC.

###

The research was conducted in collaboration with the Vancouver Prostate Centre, a Vancouver Coastal Health Research Institute (VCHRI) research centre, and was funded by the Canadian Institutes of Health Research (CIHR

Media Contact
Tracy Pham
[email protected]

Related Journal Article

https://news.ubc.ca/2019/02/25/new-protein-switch-could-be-key-to-controlling-blood-poisoning-and-preventing-death/
http://dx.doi.org/10.1016/j.immuni.2019.01.014

Tags: BiochemistryCell BiologyImmunology/Allergies/AsthmaMedicine/HealthMicrobiologyPublic HealthSurgery
Share12Tweet7Share2ShareShareShare1

Related Posts

Transdermal Contraception: Advancing Reproductive Justice for Women

September 9, 2025

PCORI Grants New Patient-Centered Comparative Effectiveness Research to Enhance Informed Health Care Decisions

September 9, 2025

Early Cerebral Palsy Detection Accelerated in High-Risk Infants

September 9, 2025

Impact of Weighted Blankets on ADHD Sleep Issues

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • Physicists Develop Visible Time Crystal for the First Time

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ferric Reductase Controls Iron Uptake in Blastocystis

Transdermal Contraception: Advancing Reproductive Justice for Women

Chinese Scientists Create Assembloid Model to Unravel Adenomyosis Pathogenesis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.