• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, January 22, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New procedure will reduce the need for rare metals in chemical synthesis

Bioengineer by Bioengineer
November 30, 2020
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Kanazawa University are working to improve the long-term sustainability of pharmaceutical and other chemical syntheses

IMAGE

Credit: Kanazawa University

Kanazawa, Japan – Pharmaceuticals, plastics, and many other chemical products have transformed human life. To prepare these products, chemists often use a catalyst–frequently based on rare metals–at various points in their syntheses. Although rare-metal catalysts are incredibly useful, their limited supply means that their use is unsustainable in the long term. Synthetic chemists need an alternative.

In a study recently published in Angewandte Chemie, researchers from Kanazawa University report such an alternative. Their research on a broad class of chemical reactions that are common in pharmaceutical and other syntheses will pave the way to a more sustainable chemical industry.

The 2010 Nobel Prize in Chemistry went to researchers who used catalysts based on palladium metal to perform a common type of chemical reaction known as cross-coupling. Such catalysts work very well for synthesizing what are known as congested quaternary carbon centers, which are common in molecules used in agriculture and medicine. However, for long-term sustainability, researchers need an alternative to rare-metal catalysts.

“We used benzylic organoborates to perform tertiary alkylative cross-coupling of aryl or alkyl electrophiles,” says Hirohisa Ohmiya, corresponding author of the study. “Our procedure does not use rare elements and is a straightforward route to quaternary carbon centers.”

The researchers’ initial studies consisted of a tertiary benzylboronate that is first activated by a potassium alkoxide base to become a benzyl anion. This anion then undergoes a cross-coupling reaction with a secondary alkyl chloride electrophile.

“The reaction has broad scope,” explains corresponding author Hirohisa Ohmiya. “For example, replacing the phenyl group of the boronate with various aromatic rings was successful, and the electrophile can be a wide range of rings and linear chains.”

Subsequent studies replaced the secondary alkyl chloride with various aryl nitriles, aryl ethers, and aryl fluorides. Many of these reactions were successful, such as those with 4-cyanopyridine and 4-fluorophenylbenzene.

A comment in Nature on November 19 indicates that the COVID-19 pandemic has disrupted supply chains to various rare metals that are pertinent to the chemical industry. Hundreds of mines and factories have been closed, and many national borders are more restricted than before the pandemic. A long-term solution to supply chain disruptions is to develop synthetic protocols that don’t use rare metals. The research described here is an important part of that effort and will help make chemical syntheses more sustainable for future generations.

###

Media Contact
Tomoya Sato
[email protected]

Related Journal Article

http://dx.doi.org/10.1002/anie.202010251

Tags: Chemistry/Physics/Materials SciencesPharmaceutical Sciences
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

Astronomers discover first cloudless, Jupiter-like planet

January 21, 2021
IMAGE

Bringing atoms to a standstill: NIST miniaturizes laser cooling

January 21, 2021

Combining best of both worlds for cancer modeling

January 21, 2021

Squeezing a rock-star material could make it stable enough for solar cells

January 21, 2021
Next Post
IMAGE

Small molecules control bacterial resistance to antibiotics

IMAGE

New Hubble data explains missing dark matter

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    64 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Climate ChangeEcology/EnvironmentMaterialsChemistry/Physics/Materials SciencesCell BiologyTechnology/Engineering/Computer ScienceBiologycancerGeneticsMedicine/HealthPublic HealthInfectious/Emerging Diseases

Recent Posts

  • New combination of immunotherapies shows great promise for treating lung cancer
  • Astronomers discover first cloudless, Jupiter-like planet
  • Advances in modeling and sensors can help farmers and insurers manage risk
  • Bringing atoms to a standstill: NIST miniaturizes laser cooling
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In