• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 3, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New principle for treating tuberculosis

by
July 31, 2024
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from Heinrich Heine University Düsseldorf (HHU) and the University of Duisburg-Essen (UDE) have together succeeded in identifying and synthesising a group of molecules that can act against the cause of tuberculosis in a new way. In the scientific journal Cell Chemical Biology, they describe that the so-called callyaerins act against the infectious disease by employing a fundamentally different mechanism compared to antibiotic agents used to date.

Target structure

Credit: HHU/Rainer Kalscheuer

Researchers from Heinrich Heine University Düsseldorf (HHU) and the University of Duisburg-Essen (UDE) have together succeeded in identifying and synthesising a group of molecules that can act against the cause of tuberculosis in a new way. In the scientific journal Cell Chemical Biology, they describe that the so-called callyaerins act against the infectious disease by employing a fundamentally different mechanism compared to antibiotic agents used to date.

The infectious disease tuberculosis is caused by the bacterium Mycobacterium tuberculosis (for short: M. tuberculosis). More than ten million people contract the disease worldwide every year. According to the World Health Organisation (WHO), 1.6 million people died of tuberculosis in 2021 alone. This makes it one of the most significant infectious diseases and, in particular in countries with inadequate healthcare systems, it represents a serious threat to the population.

Over time, M. tuberculosis has developed resistance to many antibiotics, making treatment increasingly difficult. There are currently only a few drugs available that are effective against resistant strains. Researchers are therefore seeking new antibacterial compounds and mechanisms of action as a basis for the development of completely new drugs.

A research team headed by Professor Dr Rainer Kalscheuer from the Institute of Pharmaceutical Biology and Biotechnology at HHU and Professor Dr Markus Kaiser from the Center of Medical Biotechnology at UDE has identified one such fundamentally new approach involving callyaerins. Chemically, these natural substances of marine origin are classed as so-called cyclopeptides.

“We have succeeded in chemically synthesising the substance that occurs naturally in marine sponges in order to test its effect on tuberculosis bacteria in cell cultures. This has enabled us to produce new, more potent derivatives that do not exist in nature. Such chemical synthesis needs to be successful before a potential active agent can be used as a drug on a large scale,” explains Dr David Podlesainski from UDE, one of the two lead authors of the study that has now been published in Cell Chemical Biology.

The tuberculosis bacterium primarily infects human phagocytes, the so-called macrophages, in which the bacteria then multiply. The researchers have now discovered that callyaerins can inhibit the growth of the bacterium in human cells.

Emmanuel Tola Adeniyi, doctoral researcher at HHU and co-lead author of the study: “The callyaerins attack a specific membrane protein of M. tuberculosis called Rv2113, which is not essential for the viability of the bacterium. This comprehensively disrupts the metabolism of the bacterium, hindering its growth. By contrast, human cells remain unaffected by the callyaerins.”

Professor Kalscheuer, corresponding author of the study: “With the callyaerins, we have discovered a new mechanism of action. Unlike other antibiotics, these substances do not block vital metabolic pathways in the bacterial cell. Instead, they directly attack a non-essential membrane protein of the bacterium, which has not been considered as a potential target before.”

Professor Kaiser, the second corresponding author, focuses on a further perspective: “In further research work, we now need to clarify precisely how callyaerins interact with Rv2113 and how this interaction disrupts various cellular processes in such a way that M. tuberculosis can no longer grow. However, we have been able to show that non-essential proteins can also represent valuable target structures for the development of novel antibiotics.”

Original publication:

David Podlesainski, Emmanuel T. Adeniyi, Yvonne Gröner, Florian Schulz, Violetta Krisilia, Nidja Rehberg, Tim Richter, Daria Sehr, Huzhuyue Xie, Viktor E. Simons, Anna-Lene Kiffe-Delf, Farnusch Kaschani, Thomas R. Ioerger, Markus Kaiser and Rainer Kalscheuer. The anti-tubercular callyaerins target the Mycobacterium tuberculosis-specific non-essential membrane protein Rv2113. Cell Chemical Biology 31 (2024).

DOI: 10.1016/j.chembiol.2024.06.002



Journal

Cell Chemical Biology

DOI

10.1016/j.chembiol.2024.06.002

Article Title

The anti-tubercular callyaerins target the Mycobacterium tuberculosis-specific non-essential membrane protein Rv2113

Article Publication Date

8-Jul-2024

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

CK2–PRC2 Signal Drives Plant Cold Memory Epigenetics

August 2, 2025
blank

AI-Driven Protein Design Advances T-Cell Immunotherapy Breakthroughs

August 1, 2025

Melanthiaceae Genomes Reveal Giant Genome Evolution Secrets

August 1, 2025

“Shore Wars: New Study Tackles Oyster-Mangrove Conflicts to Boost Coastal Restoration”

August 1, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    52 shares
    Share 21 Tweet 13
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Bipolar-Barrier Tunnels Boost Mid-Wave Infrared Detection

Micro- and Nanoplastics Threaten Early-Life Health: Risks

PI-RADS v2.1 Plus Amide Transfer Boosts Detection

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.