• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New physical picture leads to a precise finite-size scaling of (3+1)-dimensional O(n) critical system

Bioengineer by Bioengineer
November 25, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: ©Science China Press

Since the establishment of the renormalization group theory, it has been known that systems of critical phenomena typically possess an upper critical dimension dc (dc=4 for the O(n) model), such that in spatial dimensions at or higher than the dc, the thermodynamic behavior is governed by critical exponents taking mean-field values. In contrast to the simplicity of the thermodynamic behavior, the theory of finite-size scaling (FSS) for the d>dc O(n) model was surprisingly subtle and had remained the subject of ongoing debate till recently, when a two-length scaling ansatz for the two-point correlation function was conjectured, numerically confirmed, and partly supported by analytical calculations.

At the upper critical dimensionality dc, multiplicative and additive logarithmic corrections generally occur to the bare mean-field behavior. The clarification of logarithmic corrections in FSS becomes “notoriously hard”, due to the lack of analytical insights beyond the phenomenological level and the limit of system sizes available in numerical simulations. The precise logarithmic FSS form at d=dc has remained a long-standing problem.

Recently, Jian-Ping Lv, Wanwan Xu, and Yanan Sun from Anhui Normal University, Kun Chen from Rutgers, the State University of New Jersey, and Youjin Deng from University of Science and Technology of China and Minjiang University addressed the logarithmic FSS of the O(n) symmetry at the upper critical dimensionality. Borrowing insights from higher dimensions, they established an explicit scaling form for the free energy density, which simultaneously consists of a scaling term for the Gaussian fixed point and another term with multiplicative logarithmic corrections. In particular, they conjectured that the finite-size critical two-point correlation exhibits a two-length behavior, which is governed by Gaussian fixed point at shorter distance, and enters a plateau at larger distance whose height decreases with system size in a power law corrected by a logarithmic exponent.

On this basis, the FSS of various macroscopic quantities were predicted. They then carried out extensive Monte Carlo simulations for the n-vector model with n=1,2,3, and obtained solid evidence supporting the conjectured scaling forms from the FSS of the susceptibility, the magnetic fluctuations at non-zero Fourier modes, the Binder cumulant, as well as the two-point correlation at the distance of half of the linear system size. This is a significant step toward a complete solution of the logarithmic FSS at d=dc for systems having an upper critical dimensionality.

The study is not only of theoretical importance in model systems but also of practical relevance to a large number of experimental systems. It is noted that due to technological developments, the experimental realization of the O(n) model is now available in various physical systems including quantum magnetic materials, Josephson junction arrays, and ultracold atomic systems. According to the quantum-to-classical mapping, the three-dimensional quantum O(n) systems are at the upper critical dimensionality.

###

See the article:

Finite-size Scaling of O(n) Systems at the Upper Critical Dimensionality
Jian-Ping Lv, Wanwan Xu, Yanan Sun, Kun Chen, Youjin Deng
Natl Sci Rev, 2020, doi: 10.1093/nsr/nwaa212
https://doi.org/10.1093/nsr/nwaa212

Media Contact
Jian-Ping Lv
[email protected]

Related Journal Article

http://dx.doi.org/10.1093/nsr/nwaa212

Tags: Chemistry/Physics/Materials Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Selective Arylating Uncommon C–F Bonds in Polyfluoroarenes

October 4, 2025
Building Larger Hydrocarbons for Optical Cycling

Building Larger Hydrocarbons for Optical Cycling

October 4, 2025

Scientists Discover How Enzymes “Dance” During Their Work—and Why It Matters

October 4, 2025

Electron Donor–Acceptor Complexes Enable Asymmetric Photocatalysis

October 4, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    94 shares
    Share 38 Tweet 24
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    92 shares
    Share 37 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    75 shares
    Share 30 Tweet 19
  • New Insights Suggest ALS May Be an Autoimmune Disease

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Supporting Caregivers of COPD Patients: Key Insights

Exploring Plastid Genome Traits in Saururaceae

Evaluating Mid-Upper Arm Circumference for Child Thinness

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 62 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.