• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, April 10, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New organic material unlocks faster and more flexible electronic devices

Bioengineer by Bioengineer
July 15, 2020
in Science News
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Jack Fox, ANU

Mobile phones and other electronic devices made from an organic material that is thin, bendable and more powerful are now a step closer thanks to new research led by scientists at The Australian University (ANU).

Lead researchers Dr Ankur Sharma and Associate Professor Larry Lu say it would help create the next generation of ultra-fast electronic chips, which promise to be much faster than current electronic chips we use.

“Conventional devices run on electricity – but this material allows us to use light or photons, which travels much faster,” Dr Sharma said.

“The interesting properties we have observed in this material make it a contender for super-fast electronic processors and chips.

“We now have the perfect building block, to achieve flexible next generation electronics.”

Associate Professor Lu said they observed interesting functions and capabilities in their organic material, previously unseen.

“The capabilities we observed in this material that can help us achieve ultra-fast electronic devices,” said Associate Professor Lu.

The team were able to control the growth of a novel organic semiconductor material – stacking one molecule precisely over the other.

“The material is just one carbon atom thick, a hundred times thinner than a human hair, which gives it the flexibility to be bent into any shape. This will lead to its application in flexible electronic devices.”

In 2018 the same team developed a material that combined both organic and inorganic elements.

Now, they’ve been able to improve the organic part of the material, allowing them to completely remove the inorganic component.

“It’s made from just carbon and hydrogen, which would mean devices can be biodegradable or easily recyclable, thus avoiding the tonnes of e-waste generated by current generation electronic devices,” Dr Sharma said.

Dr Sharma says while the actual devices might still be some way off, this new study is an important next step, and a key demonstration of this new material’s immense capabilities.

###

The research has been published in the journal Nature: Light Science & Applications

Media Contact
Jess Fagan
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-00347-y

Tags: Nanotechnology/MicromachinesTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

IMAGE

Men with low health literacy less likely to choose active surveillance for prostate cancer after tumor profiling

April 10, 2021
IMAGE

Level of chromosomal abnormality in lung cancer may predict immunotherapy response

April 10, 2021

Mutant KRAS and p53 cooperate to drive pancreatic cancer metastasis

April 10, 2021

Better metric for thermoelectric materials means better design strategies

April 10, 2021

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    Terahertz accelerates beyond 5G towards 6G

    851 shares
    Share 340 Tweet 213
  • Jonathan Wall receives $1.79 million to develop new amyloidosis treatment

    59 shares
    Share 24 Tweet 15
  • UofL, Medtronic to develop epidural stimulation algorithms for spinal cord injury

    55 shares
    Share 22 Tweet 14
  • A sturdier spike protein explains the faster spread of coronavirus variants

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

GeneticsCell BiologyBiologyPublic HealthMedicine/HealthcancerInfectious/Emerging DiseasesMaterialsTechnology/Engineering/Computer ScienceClimate ChangeChemistry/Physics/Materials SciencesEcology/Environment

Recent Posts

  • Men with low health literacy less likely to choose active surveillance for prostate cancer after tumor profiling
  • Level of chromosomal abnormality in lung cancer may predict immunotherapy response
  • Mutant KRAS and p53 cooperate to drive pancreatic cancer metastasis
  • Better metric for thermoelectric materials means better design strategies
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In