• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, July 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New optimisation method for computational design of industrial applications

Bioengineer by Bioengineer
July 16, 2021
in Chemistry
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The study has been selected as an outstanding publication by the prestigious scientific journal Physics of Fluids

IMAGE

Credit: University of Malaga

In the field of industrial engineering, using simulations to model, predict and even optimise the response of a system or device is widespread, as it is less expensive and less complex -and, sometimes, less dangerous- than fabricating and testing several prototypes.

This type of simulation studies uses numerical methods that, depending on the problem to be addressed -for example, reducing the aerodynamic forces of an aircraft by changing its shape or using the minimum possible amount of material on elements under loading without breaking- require the simulation of a wide variety of possible combinational cases, which entails high computational costs.

The researchers from the School of Industrial Engineering of the University of Malaga Francisco Javier Granados Ortiz and Joaquín Ortega Casanova have taken one step further by developing a novel computational design optimisation method that reduces these simulation costs by using artificial intelligence.

Faster and cost-efficient designs

They have developed a new methodology with Machine Learning algorithms to predict whether a combination of the design parameters of a problem will be useful or not, based on the objective pursued, and thus guide the design process.

“This method enables us to obtain faster optimised designs by discarding simulations of little or no interest, thus saving not only physical prototype fabrication costs, but also those related to simulation”, explain the researchers of the Area of Fluid Mechanics.

###

Particularly, this procedure has been applied to the design of a mechanical mixer that produces a significant increase in heat/mass transfer between two fluids thanks to vortex shedding, which results in an oscillating flow. “Based on the design parameters of the mixer, with our method we have verified that this flow can be controlled and achieve an efficient increase in mixing, but, at the same time, a decrease in pressure drop within it”, says Ortega Casanova.

The results of this research were published in the scientific journal Physics of Fluids, which selected this publication as one of its “Editor’s Picks”.

Bibliography:

Granados Ortiz, F.J. y Ortega-Casanova, J. (2021) Machine learning-aided design optimisation of a mechanical micromixer. Physics of Fluids; (33): 063604 https://doi.org/10.1063/5.0048771

Media Contact
María Guerrero
[email protected]

Original Source

https://aip.scitation.org/doi/10.1063/5.0048771

Related Journal Article

http://dx.doi.org/10.1063/5.0048771

Tags: Civil EngineeringIndustrial Engineering/ChemistryRobotry/Artificial IntelligenceTechnology/Engineering/Computer ScienceUrbanization
Share12Tweet8Share2ShareShareShare2

Related Posts

Architecture of VBayesMM

Unraveling Gut Bacteria Mysteries Through AI

July 4, 2025
Visulaization of ATLAS collision

Can the Large Hadron Collider Prove String Theory Right?

July 3, 2025

Breakthrough in Gene Therapy: Synthetic DNA Nanoparticles Pave the Way

July 3, 2025

Real-Time Electrochemical Microfluidic Monitoring of Additive Levels in Acidic Copper Plating Solutions for Metal Interconnections

July 3, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    56 shares
    Share 22 Tweet 14
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    42 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    45 shares
    Share 18 Tweet 11
  • Engineered Cellular Communication Enhances CAR-T Therapy Effectiveness Against Glioblastoma

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Merbecovirus S2 Vaccines Trigger Cross-Reactive MERS Protection

Cracking the Code of Cancer Drug Resistance

Peptidoglycan Links Prevent Lysis in Gram-Negative Bacteria

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.