• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, August 10, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New NUS technology completes vital class of industrial reactions five times faster

Bioengineer by Bioengineer
May 20, 2021
in Science News
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The research team used oscillating electric potentials to increase the rate of hydrogenation on typical commercial catalysts

IMAGE

Credit: National University of Singapore

Everything from the production of fertilisers and plastics, to liquid fuels and pharmaceuticals require an important chemical reaction known as hydrogenation. This is a process involving the addition of hydrogen to unsaturated chemical bonds. Enhancing the rate of hydrogenation can lead to higher yields for industries and lower environmental impacts.

Now, a team of scientists, led by Associate Professor Yan Ning from the Department of Chemical and Biomolecular Engineering at the National University of Singapore (NUS), has come up with a method to increase the rate of ethylene hydrogenation by more than five times compared to typical industrial rates.

The team achieved this using a radically different approach. Unlike most current hydrogenation processes that use a static solid catalyst to speed up the reaction, the technique developed by NUS researchers applies oscillating electric potentials to a commercial hydrogenation catalyst, which then dramatically increased the hydrogenation rate of ethylene to ethane.

“Such enhancements in the rates or selectivity of chemical reactions are instrumental in making a chemical process more efficient. Our work demonstrates a more direct and cost-effective way of optimising catalyst performance that is beyond conventional methods,” Assoc Prof Yan said.

The team’s groundbreaking work was published in JACS Au on 14 April 2021.

Enhancing hydrogenation catalysis with oscillating electric potentials

Most hydrogenation catalysts have been developed over many centuries, but the development of new catalysts has been typically limited to conventional material design approaches. A few studies have shown that catalysis can be promoted by applying electric potentials to the catalyst. While these methods have already improved the selectivity and activity of heterogeneous catalysts under static conditions, the use of dynamic external stimuli has been underexplored.

The new findings by the NUS team offer an advanced engineering tool using oscillating electric potentials to promote the rate of chemical reactions without the development of new catalytic materials.

To achieve this, the NUS team carried out experiments using a commercial palladium catalyst in a laboratory-scale electrochemical reactor, and observed a rate enhancement of five times under optimal dynamic conditions. They managed to correlate the rate enhancement with the double-layer capacitance – an indicator of the local electric field strength at the catalyst-electrolyte interface – by using different electrolyte solutions. The properties of the catalyst changed periodically and continuously, which sped up the steps involved in the ethylene hydrogenation reaction.

The researchers conducted further kinetic experiments, which suggested that the enhancement could be related to the partial removal of strongly adsorbed hydrogen from the catalyst surface at a negative potential, and the subsequent adsorption and hydrogenation of ethylene at a positive potential.

The team’s findings illustrate the feasibility of using oscillating potentials to improve the catalytic rate of a relatively simple hydrogenation reaction. A similar approach could be extended to control the activity and selectivity of a wide range of catalytic reactions.

Next steps

The NUS team is conducting more studies to improve their understanding of the fundamental principles behind their new technique. They are also looking to further develop their approach into a general strategy for enhancing catalysts beyond their ‘static optimum’.

###

Media Contact
Denise Yuen
[email protected]

Original Source

http://news.nus.edu.sg/new-nus-technology-completes-vital-class-of-industrial-reactions-five-times-faster/

Related Journal Article

http://dx.doi.org/10.1021/jacsau.1c00044

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesIndustrial Engineering/ChemistryResearch/DevelopmentTechnology/Engineering/Computer ScienceUrbanization
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Kombucha’s Pharmaceutical Potential: Production, Patents, Challenges

August 10, 2025
blank

Enhancing Lithium Storage in Zn3Mo2O9 with Carbon Coating

August 10, 2025

Surfactants and Oils Shape Emulsion Ripening Rates

August 10, 2025

Neuroprosthetics Revolutionize Gut Motility and Metabolism

August 10, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    138 shares
    Share 55 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    77 shares
    Share 31 Tweet 19
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    56 shares
    Share 22 Tweet 14
  • Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Kombucha’s Pharmaceutical Potential: Production, Patents, Challenges

Enhancing Lithium Storage in Zn3Mo2O9 with Carbon Coating

Surfactants and Oils Shape Emulsion Ripening Rates

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.