• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, May 25, 2022
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New nanomechanical oscillators with record-low loss

Bioengineer by Bioengineer
May 12, 2022
in Chemistry
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The vibrational modes of nanomechanical resonators are analogous to different notes of a guitar string and have similar properties such as frequency (pitch) and lifetime. The lifetime is characterized by the quality factor, which is the number of times that the resonator oscillates until its energy is reduced by 70%. The quality factor is crucial for the modern applications of mechanical resonators as it determines the level of thermal noise, which is a limit for sensing weak forces and observation of quantum effects.

A polygon resonator

Credit: Mohammad J. Bereyhi (EPFL)

The vibrational modes of nanomechanical resonators are analogous to different notes of a guitar string and have similar properties such as frequency (pitch) and lifetime. The lifetime is characterized by the quality factor, which is the number of times that the resonator oscillates until its energy is reduced by 70%. The quality factor is crucial for the modern applications of mechanical resonators as it determines the level of thermal noise, which is a limit for sensing weak forces and observation of quantum effects.

Now, scientists at EPFL led by Professor Tobias J. Kippenberg show that a regular polygon suspended at its vertices supports vibrational modes along the perimeter with extremely high quality factors. This is a consequence of the geometrical symmetry of regular polygons, combined with the elastic properties of structures under tension. This approach to loss-engineering has an important advantage over previous techniques: realizing high quality factors in devices with much smaller footprints.

“The new perimeter modes not only beat the record for the highest quality factor, but are almost 20 times more compact than devices with similar performance,” says Nils Engelsen, the study’s senior author. “The compactness comes with real practical benefits. In our laboratory, we try to measure and control mechanical vibrations at the quantum level using light, which requires suspension of mechanical resonators less than one micrometer from a structure which guides light. This feat is much simpler with compact devices.”

The uncomplicated design of the polygon resonators allows the authors to take one step further and make a chain of connected polygon resonators. This chain of coupled oscillators can behave strikingly different from a single resonator. The authors study the particular dynamics of this chain which arises from the way the resonators are connected.

Precision force sensing is an important application of nanomechanical resonators. By measuring the position fluctuations of a polygon resonator using an optical interferometer, the authors demonstrate that these resonators can measure force fluctuations as low as 1 attonewton. This level of sensitivity approaches that of state-of-the-art atomic force microscopes.

“We hope that the demonstrated force sensitivity of the polygons combined with their compactness and simplicity will inspire their use in actual force microscopes”, says Mohammad Bereyhi, who led the study. “So far, improvements in mechanical quality factors have come at the cost of increased size and increased design complexity, making state-of-the-art devices very difficult to fabricate. With perimeter modes it’s a different story. I believe that the simplicity of this new design greatly expands its potential to find new and promising applications.”

Reference

Mohammad J. Bereyhi, Amirali Arabmoheghi, Alberto Beccari, Sergey A. Fedorov, Guanhao Huang, Tobias J. Kippenberg, Nils J. Engelsen. Perimeter Modes of Nanomechanical Resonators Exhibit Quality Factors Exceeding 109 at Room Temperature. Phys. Rev. X 12, 021036 (2022). DOI: 10.1103/PhysRevX.12.021036



Journal

Physical Review X

DOI

10.1103/PhysRevX.12.021036

Article Title

Perimeter Modes of Nanomechanical Resonators Exhibit Quality Factors Exceeding 109 at Room Temperature.

Article Publication Date

12-May-2022

Share12Tweet7Share2ShareShareShare1

Related Posts

Figure Abstract

Improved NRR electroactivity by MoS2-SnS2/poly(zwitterionic liquids)/polypyrrole/graphene oxide

May 25, 2022
Filippo Giustozzi

Sunsmart streets using recycled rubber last twice as long

May 25, 2022

Social dissatisfaction predicts vulnerability to financial exploitation in older adults

May 24, 2022

Ultrasound-assisted laser technique vaporizes artery plaque #ASA182

May 24, 2022

POPULAR NEWS

  • Masks

    Hidden benefit: Facemasks may reduce severity of COVID-19 and pressure on health systems, researchers find

    44 shares
    Share 18 Tweet 11
  • Breakthrough in estimating fossil fuel CO2 emissions

    46 shares
    Share 18 Tweet 12
  • Sweet discovery could drive down inflammation, cancers and viruses

    43 shares
    Share 17 Tweet 11
  • Discovery of the one-way superconductor, thought to be impossible

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Weather/StormsZoology/Veterinary ScienceVaccineVehiclesUrogenital SystemUrbanizationWeaponryVirologyViolence/CriminalsUniversity of WashingtonVaccinesVirus

Recent Posts

  • Assessing the risk of drinking water contamination during flooding
  • Improved NRR electroactivity by MoS2-SnS2/poly(zwitterionic liquids)/polypyrrole/graphene oxide
  • Sunsmart streets using recycled rubber last twice as long
  • Hawk’s eyes may not help the world’s only nocturnal hawk hunt at night
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
Posting....