• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, August 14, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New molecular driver of frontal circuit maturation discovered

Bioengineer by Bioengineer
March 5, 2021
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Mount Sinai Health System

Mount Sinai Researchers find a new way to prevent attention deficits associated with Fragile X, a leading genetic cause of autism, in an animal model

Corresponding Author: Hirofumi Morishita, MD, PhD, Department of Psychiatry, Neuroscience, Friedman Brain Institute, Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York.

Bottom Line: The adolescent maturation of the frontal cortex is important for establishing cognitive function, and disruption of this process is associated with neurodevelopmental disorders. This study uncovered a new molecular driver of frontal circuit maturation that is essential for cognitive function, and demonstrated, in an animal model, that this mechanism can be targeted to restore attention deficits caused by a leading genetic cause of autism.

Results: This study identified that neurotransmission (communication between neurons) via nicotinic receptors in the brain plays a major developmental role in establishing attentional circuitry and behavior. Although a naturally occurring neurotransmitter called acetylcholine is the usual activator of this brain receptor, it is also so-named the “nicotinic receptor,” as it binds and responds to nicotine, thereby activating the receptor as well. They found that too much signaling via the nicotinic receptors in this circuit causes dysregulation of attention circuit development and subsequent attentional behavior deficit. This study also demonstrated that deficits in attentional circuitry and behavior in a mouse model of Fragile X syndrome can be prevented by selectively suppressing communication via nicotinic receptors in the frontal circuit, starting in adolescence.

Why the Research Is Interesting: This study provides novel insights into the pathophysiology of neurodevelopmental disorders by identifying that in a mouse model of Fragile X syndrome, a leading genetic cause of autism, there is failed top-down circuit maturation, leading to attention deficits due to excessive communication through nicotinic receptors. This study also points to regulation of neurotransmission via nicotinic receptors as a therapeutic target for attentional circuit impairments in neurodevelopmental disorders.

Who: A mouse model of Fragile X syndrome, a leading genetic cause of autism.

When: Animals were treated with molecular interventions from adolescence period and their frontal cortical circuit and behavior were studied in adulthood.

What: The study examined molecular and circuit alternations in frontal cortex and associated attentional behavior changes in a mouse model of Fragile X syndrome.

How: Neurons in frontal cortex projecting to visual cortex were characterized using electrophysiological, structural, and behavioral methodologies. Neuromodulatory signaling via nicotinic receptor was manipulated from adolescent period to examine the therapeutic potential.

Study Conclusions: Frontal sensory projection neurons undergo dynamic regulation of neurotransmission through nicotinic receptors from adolescent period to establish attentional circuit and behavior. A mouse model of Fragile X syndrome shows deficits in this attentional circuit and behavior, but these deficits can be prevented by the frontal circuit selective suppression of signaling via nicotinic receptors beginning in adolescence.

Paper Title: Nicotinic regulation of local and long-range input balance drives top-down attentional circuit maturation.

Said Mount Sinai’s Dr. Hirofumi Morishita of the research: “For the last 20 years, developmental windows when synaptic connections are established for lifetime function, as well as their molecular controls, has been extensively studied in sensory areas. In contrast, very little is known about drivers of frontal cortical circuit maturation due to its complexity, making it difficult to relate molecular and synaptic changes to development of cognition. Our discovery of the drivers of circuit maturation in the context of cognitive behavior will likely point to therapeutic targets to reduce cognitive deficits shared across a range of disorders.”

###

To request a copy of the paper or to schedule an interview with Dr. Hirofumi Morishita, please contact Mount Sinai’s Director of Media and Public Affairs, Elizabeth Dowling, at [email protected] or at 212 241-9200.

Media Contact
Elizabeth Dowling
[email protected]

Tags: BehaviorMedicine/HealthMemory/Cognitive ProcessesneurobiologyNeurochemistrySocial/Behavioral Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Frailty Increases Risk of Respiratory Complications and Mortality Among Smokers

Frailty Increases Risk of Respiratory Complications and Mortality Among Smokers

August 14, 2025
Global Biobank Study Reveals Diverse Dementia Genetics

Global Biobank Study Reveals Diverse Dementia Genetics

August 14, 2025

Artificial Intelligence Drives Advances in Solid-State Battery Material Screening and Performance Assessment

August 14, 2025

AI-Powered Transparent Sleep Apnea Assessment Unveiled

August 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

MIT Researchers Harness Generative AI to Develop Compounds Targeting Drug-Resistant Bacteria

Frailty Increases Risk of Respiratory Complications and Mortality Among Smokers

State-by-State Insights: Public Awareness of HPV, the HPV Vaccine, and Cancer Links

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.