• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, February 8, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New model found for microsphere-enhanced interferometry

Bioengineer by Bioengineer
November 4, 2022
in Chemistry
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Optical measurement techniques collecting light intensity in the far-field such as conventional and confocal microscopy or coherence scanning interferometry (CSI) enable fast and contactless inspection of several types of specimens. Nonetheless, optical measurement instruments suffer from diffraction effects leading to a fundamental lateral resolution limitation given by the minimum resolvable period length of Abbe-limit and the objective lens’s numerical aperture (NA).

Numerical model of microsphere-assisted CSI and methodology to study the resolution enhancement.

Credit: by Tobias Pahl, Lucie Hüser, Sebastian Hagemeier and Peter Lehmann

Optical measurement techniques collecting light intensity in the far-field such as conventional and confocal microscopy or coherence scanning interferometry (CSI) enable fast and contactless inspection of several types of specimens. Nonetheless, optical measurement instruments suffer from diffraction effects leading to a fundamental lateral resolution limitation given by the minimum resolvable period length of Abbe-limit and the objective lens’s numerical aperture (NA).

In a new paper published in Light: Applied Manufacturing, a team of scientists led by Professor Peter Lehmann from the University of Kassel have developed a new model for modeling microscopic imaging under microsphere-enhanced interference microscopy.

Microspheres can be applied in microscopic imaging and measurement to overcome the resolution limit. Microspheres placed close to the surface are shown to enable a local improvement of the lateral resolution and a magnification enhancement. Microspheres can be combined with CSI to obtain electromagnetic phase information. Since the improvement of optical resolution is of great interest in many fields of application of microscopic imaging, microsphere-enhanced measurements are part of many recent experimental and theoretical publications.

Microspheres of high refractive index material can be combined with immersion objectives or embedded in elastomers. Microsphere-assisted measurements also apply to biological and medical objects such as viruses and sub-cellular structures or for identifying blood cells. As a result, microsphere-assisted measurements are used in many applications. Many theoretical studies are conducted to understand and analyze phenomena leading to resolution enhancement.

The research team has presented a simulation. It considers the full imaging process of a microsphere-enhanced interference microscope working in reflection mode equipped with objective lenses of high numerical aperture using a FEM calculation of the near-field scattering process. In contrast to previous theoretical models, they considered the full 3D conical Köhler illumination with incident waves and conical imaging of the scattered light field by the microsphere.

The model reliably reproduces measurement results, as demonstrated for several surface topographies measured with CSI. A first quantitative comparison with measurement results of microsphere-assisted interferometry is given. Using the model, the researchers have presented a method to qualify the resolution enhancement by a microsphere. They have demonstrated the relative improvement of the lateral resolution and have shown that the enhanced lateral magnification decreases with for high numerical apertures. In contrast, the field of view increases for larger NA values of the objective microscope lens.

Furthermore, the presented approach enables future researchers to analyze parameter influences and finding the most appropriate experimental setup depending on the shape, size, and material of the microelement as well as surrounding material to improve the resolution and profile fidelity of CSI. The model can be extended to conventional microscopy, confocal microscopy, and other optical profilers without significant effort. Therefore, the presented model can significantly contribute to a better understanding of microsphere-assisted measurement systems and improve their imaging capabilities through parameter studies.



Journal

Light: Advanced Manufacturing

DOI

10.37188/lam.2022.049

Share12Tweet7Share2ShareShareShare1

Related Posts

Machine learning for adaptive multiphase estimation with an integrated photonic quantum sensor.

Deep learning for quantum sensing

February 7, 2023
High droplet-number cloud distribution

Antarctica’s ocean brightens clouds

February 7, 2023

First Carl Zeiss Humboldt Research Award goes to Alexej Jerschow

February 7, 2023

Penguin physics: understanding the mechanisms of underwater turning maneuvers in penguins

February 7, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    66 shares
    Share 26 Tweet 17
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9
  • Duke-NUS and NHCS scientists first in the world to regenerate diseased kidney

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Size of X-Ray beams successfully evaluated with mathematics

Scientists develop new index based on functional morphology to understand how ancestors of modern birds used their wings

Immunaeon joins the RegenMed Hub

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In