• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, September 22, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New model captures the erratic speed of DNA copying proteins in bacteria

Bioengineer by Bioengineer
September 29, 2022
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Cell division is fundamental for life, allowing organisms to grow, repair tissues, and reproduce. For a cell to divide, all the DNA inside the cell (the genome) must first be copied, in a process called DNA replication. But the precise dynamics of replisomes – the protein machinery that copies DNA – has been difficult for scientists to determine. 

Growth rate affects replisome speed

Credit: OIST

Cell division is fundamental for life, allowing organisms to grow, repair tissues, and reproduce. For a cell to divide, all the DNA inside the cell (the genome) must first be copied, in a process called DNA replication. But the precise dynamics of replisomes – the protein machinery that copies DNA – has been difficult for scientists to determine. 

Now, researchers at the Okinawa Institute of Science and Technology (OIST) in Japan have developed a new model that can determine variations in the speed at which replisomes copy bacterial genomes. The model, combined with experiments, shows that certain sections of DNA are copied faster than others and reveals an intriguing link between replication speed and error rate. The research was published in eLife on July 25, 2022.

“The machines that copy DNA are amazing – they are very fast and very precise,” said Simone Pigolotti, an Associate Professor at OIST who heads the Biological Complexity Unit. “Understanding these machines can tell us what is important for cells – what mistakes are tolerable, what mistakes are not, how fast replication should be.”

The model relies on measuring how abundant different DNA locations are within a population of bacterial cells that are constantly dividing. In bacteria, to start DNA replication, two replisomes attach to the DNA at a set origin point and head in opposite directions along the loop of DNA, copying DNA until they meet on the other side. This means that the DNA closest to the origin point is copied first, while DNA closest to the termination point is copied last.

“If you let a population of bacteria freely grow, then at any given point in time, most cells will be in the process of cell division. Because DNA replication always starts from the same location, this means that if you then sequence all the DNA, there will be a higher abundance of DNA that is closest to the origin point, and a much lower amount of DNA that is closer to the end point,” explained Prof. Pigolotti.

In the study, researchers from the Nucleic Acid Chemistry and Engineering Unit at OIST cultured Escherichia coli (E. coli) bacteria at different temperatures. The Sequencing Section then sequenced the bacteria’s DNA. 

By analyzing features of the distribution curve, the researchers were able to determine the exact speed of the protein machinery. They found that as the temperature increased, the replication speed increased. Even more interestingly, the researchers discovered that the replisomes varied their speed at different points along the genome.

One potential reason for their fluctuating speed, Prof. Pigolotti speculates, is that there may be limits on resources needed for replication, such as nucleotides – the building blocks of DNA.

In E. coli, when conditions are good, a single bacterial cell can divide every 25 minutes. But the process of replicating DNA takes longer – around 40 minutes. Therefore, in order to keep up at high growth rates, multiple copies of the genome are replicated at the same time, which increases the number of replisomes at work. Competition for nucleotides could then cause the replisomes to slow down.

Additional evidence backs up this hypothesis. At low temperatures and in nutrient-poor cultures, when the growth rate of the bacteria is low and only one genome would be copied at a time, these fluctuations in replication speed disappear.

Intriguingly, the researchers also found that the oscillations seen for replication speed also matched the oscillations in mutation rate documented in other studies. When they overlaid the two patterns, they found that areas of the genome that were copied faster also had a higher mutation rate.

“This seems intuitive – if we think of an action, like typing on a keyboard, the faster we type, the more likely that we will make a mistake,” said Prof. Pigolotti. “So we think that when the replisomes go faster, their error rate is higher.”

For Prof. Pigolotti, the next step is to determine how the speed of replication changes in mutant strains of E. coli, such as ones that are missing proteins that assist in replication. He is also curious to see if the pattern holds in other strains of bacteria.

“It’s a really exciting research direction,” said Prof. Pigolotti. “And all the work was done in collaboration with other units here. It’s the kind of interdisciplinary collaboration that can only happen at OIST.”



Journal

eLife

DOI

10.7554/eLife.75884

Method of Research

Computational simulation/modeling

Subject of Research

Not applicable

Article Title

Speed variations of bacterial replisomes

Article Publication Date

25-Jul-2022

COI Statement

No competing interests declared

Share12Tweet8Share2ShareShareShare2

Related Posts

The three proteins, BICC1, ANKS3, and ANKS6 interacting to bind and regulate mRNA in asymmetrical development of organs.

The dance of organ positioning: a tango of three proteins

September 21, 2023
Application of fs8.1 has facilitated mechanical harvesting of processing tomatoes

Scientists design fresh tomatoes suitable for mechanical harvesting

September 21, 2023

Climate change may affect 40% of biodiversity in semi-arid portion of Brazil’s Northeast by 2060

September 21, 2023

New origin story for key regulatory gene

September 21, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    58 shares
    Share 23 Tweet 15
  • University of South Florida scientist: Barnacles may help reveal location of lost Malaysia Airlines flight MH370

    46 shares
    Share 18 Tweet 12
  • Lithuanian invention at the forefront of solar technology breakthrough

    41 shares
    Share 16 Tweet 10
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    34 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Australian research leads to clinical trial for rare women’s cancers

Ochsner offers tuition assistance to aspiring nurses and doctors

Peru’s Operation Mercury stopped most illegal gold mining in one biodiversity hotspot in the Amazon. Then the COVID-19 pandemic hit.

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 57 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In