• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 18, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New mineral discovered in moon meteorite

Bioengineer by Bioengineer
November 3, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Donwilhelmsite is important for understanding the inner structure of the earth

IMAGE

Credit: © Museum für Naturkunde Berlin, Ansgar Greshake

A team of European researchers discovered a new high-pressure mineral in the lunar meteorite Oued Awlitis 001, named donwilhelmsite [CaAl4Si2O11]. The team around Jörg Fritz from the Zentrum für Rieskrater und Impaktforschung Nördlingen, Germany and colleagues at the German Research Centre for Geoscience GFZ in Potsdam, Museum für Naturkunde Berlin, Natural History Museum Vienna, Institute of Physics of the Czech Academy of Science, Natural History Museum Oslo, University of Manchester, and Deutsches Zentrum für Luft und Raumfahrt Berlin published their findings in the scientific journal “American Mineralogist“.

Besides the about 382 kilograms of rocks and soils collected by the Apollo and Luna missions, lunar meteorites allow valuable insights into the formation of the Moon. They are ejected by impacts onto the lunar surface and subsequently delivered to Earth.

Some of these meteorites experienced particularly high temperatures and pressures. The extreme physical conditions often led to shock melting of microscopic areas within these meteorites. These shocked areas are of great relevance as they mirror pressure and temperature regimes similar to those prevailing in the Earth’s mantle. Therefore, the microscopic shock melt areas are natural crucibles hosting minerals that are otherwise naturally inaccessible at the Earth’s surface. Minerals like wadsleyite, ringwoodite, and bridgmanite, constitute large parts of the Earth’s mantle. Theses crystals were synthesized in high-pressure laboratory experiments. As natural minerals they were first described and named based on their occurrences in meteorites.

The new mineral donwilhelmsite is the first high-pressure mineral found in meteorites with application for subducted terrestrial sediments. It is mainly composed of calcium, aluminum, silicon, and oxygen atoms. Donwilhelmsite was discovered within shock melt zones of the lunar meteorite Oued Awlitis 001 found in 2014 in the Western Sahara. This meteorite is compositionally similar to rocks comprising the Earth’s continents. Eroded sediments from these continents are transported by wind and rivers to the oceans, and subducted into the Earth’s mantle as part of the dense oceanic crust. While being dragged deeper into the Earth mantle the pressure and temperature increases, and the minerals transform into denser mineral phases. The newly discovered mineral donwilhelmsite forms in 460 to 700 kilometre depth. In the terrestrial rock cycle, donwilhelmsite is therefore an important agent for transporting crustal sediments through the transition zone separating the upper and lower Earth’s mantle.

This pan-European collaboration was essential to obtain the lunar meteorite, recognize the new mineral, understand its scientific relevance, and to determine the crystal structure of the tiny, the thousands part of a millimeter thick, mineral crystal with high accuracy. “At the GFZ, we used transmission electron microscopy to investigate microstructural aspects of the samples,” says Richard Wirth from the section “Interface Geochemistry”. “Our investigations and the crystal structure analyses of the colleagues from the Czech Republic once again underline the importance of transmission electron microscopy in the geosciences”.

The new mineral was named in honor of the lunar geologist Don E. Wilhelms, an American scientist involved in landing site selection and data analyses of the Apollo space missions that brought to Earth the first rock samples from the Moon. Part of the meteorite Oued Awlitis 001, acquired by crowdfunding initiative „Help us to get the Moon!”, is on display at the Natural History Museum Vienna.

###

Media Contact
Dr. Richard Wirth
[email protected]

Original Source

https://www.gfz-potsdam.de/en/media-and-communication/news/details/article/new-mineral-discovered-in-moon-meteorite/

Related Journal Article

http://dx.doi.org/10.2138/am-2020-7393

Tags: Chemistry/Physics/Materials SciencesEarth ScienceGeology/SoilGeophysicsPlanets/MoonsSpace/Planetary Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025
Photoswitchable Olefins Enable Controlled Polymerization

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025

Iridium Catalysis Enables Piperidine Synthesis from Pyridines

December 3, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    70 shares
    Share 28 Tweet 18
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    72 shares
    Share 29 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    53 shares
    Share 21 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

3D Nanolithography Via Metalens Arrays and Adaptive Illumination

Exploring Health Service Access in Southeast Nigeria’s Slums

Expert Panel Highlights Risks of Inappropriate Prescribing

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.