• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, July 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New microcomb device advances photonic technology

Bioengineer by Bioengineer
June 21, 2023
in Chemistry
Reading Time: 2 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new tool for generating microwave signals could help propel advances in wireless communication, imaging, atomic clocks, and more.

Yang He Cleanroom

Credit: University of Rochester

A new tool for generating microwave signals could help propel advances in wireless communication, imaging, atomic clocks, and more.

Frequency combs are photonic devices that produce many equally spaced laser lines, each locked to a specific frequency to produce a comb-like structure. They can be used to generate high-frequency, stable microwave signals and scientists have been attempting to miniaturize the approach so they can be used on microchips.

Scientists have been limited in their abilities to tune these microcombs at a rate to make them effective. But a team of researchers led by University of Rochester’s Qiang Lin, professor of electrical and computer engineering and optics, outlined a new high-speed tunable microcomb in Nature Communications.

“One of the hottest areas of research in nonlinear integrated photonics is trying to produce this kind of a frequency comb on a chip-scale device,” says Lin. “We are excited to have developed the first microcomb device to produce a highly tunable microwave source.”

The device is a lithium niobate resonator that allows users to manipulate the bandwidth and frequency modulation rates several orders-of-magnitude faster than existing microcombs.

“The device provides a new approach to electro-optic processing of coherent microwaves and opens up a great avenue towards high-speed control of soliton comb lines that is crucial for many applications including frequency metrology, frequency synthesis, RADAR/LiDAR, sensing, and communication,” says Yang He ’20 (PhD), who was an electrical and computer engineering postdoctoral scholar in Lin’s lab and is the first author on the paper.

Other coauthors from Lin’s group include Raymond Lopez-Rios, Usman A. Javid, Jingwei Ling, Mingxiao Li, and Shixin Xue.

The project was a collaboration between faculty and students at Rochester’s Department of Electrical and Computer Engineering and Institute of Optics as well as the California Institute of Technology. The work was supported in part by the Defense Threat Reduction Agency, the Defense Advanced Research Projects Agency, and the National Science Foundation.



Journal

Nature Communications

DOI

10.1038/s41467-023-39229-3

Article Title

High-speed tunable microwave-rate soliton microcomb

Article Publication Date

12-Jun-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Architecture of VBayesMM

Unraveling Gut Bacteria Mysteries Through AI

July 4, 2025
Visulaization of ATLAS collision

Can the Large Hadron Collider Prove String Theory Right?

July 3, 2025

Breakthrough in Gene Therapy: Synthetic DNA Nanoparticles Pave the Way

July 3, 2025

Real-Time Electrochemical Microfluidic Monitoring of Additive Levels in Acidic Copper Plating Solutions for Metal Interconnections

July 3, 2025

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    63 shares
    Share 25 Tweet 16
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • New Measurements Elevate Hubble Tension to a Critical Crisis

    43 shares
    Share 17 Tweet 11

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.