• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

New mechanism controlling the master cancer regulator uncovered

Bioengineer by Bioengineer
November 20, 2018
in Cancer
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Of the more than 23,000 genes in the human genome, only a handful assume a very central role in signal transduction and growth regulation. Of these, the three genes encoding RAS proteins are particularly important, as they are found mutated in over 25% of human cancers. The processes around the RAS gene products are also involved in a variety of rare human developmental disorders called the RASopathies. RAS proteins are absolutely central regulators of growth and oncogenesis and, in turn, every regulator of RAS is poised to be fundamentally important for cancer and a broad variety of human diseases.

Driven by the interest in identifying underlying genetic determinants of drug response in a specific type of cancer of the hematopoietic system, CeMM now reports on the mechanistic link between the LZTR1 gene, previously associated with a variety of rare disorders and rare cancers, and RAS. These findings provide a new key regulator of a pathway that is one of the best studied signaling pathways in biology. As such, it represents a major advancement. The study not only sheds new light and details on the regulation of a central growth-promoting protein, but also offers a molecular explanation for an unusually large number of pathological conditions, ranging from different types of brain and pediatric cancers to developmental pathologies like Noonan syndrome.

The research team found that the protein called LZTR1, in concert with its copartner cullin 3, regulates RAS by attaching to it a small molecular tag, called ubiquitin. The modified RAS proteins demonstrate altered localization within the cell and reduced abundance. Mutational defects or inactivation of LZTR1 lead to an increase of RAS dependent pathways causing dysregulation of growth and differentiation. LZTR1 can therefore be considered a breaker of RAS action.

Giulio Superti-Furga, the Principal Investigator who directed the study, CeMM's Scientific Director and Professor for Medical Systems Biology at the Medical University of Vienna explains: "The study is part of a long-term effort to understand the mechanism of anti-cancer drugs in leukemia and beyond and I find it very rewarding to have contributed to the discovery of a fundamental aspect of RAS regulation, the key player in cellular growth." Johannes Bigenzahn, the MD postdoctoral fellow and first author adds: "I am very happy from a medical as well as scientific perspective to have discovered a mechanism behind so many different genetic diseases as well as many unusual forms of cancer. It is reasonable to expect that our discovery may lead to the development of new therapeutic strategies targeting RAS-dependent phenotypes in the future."

###

The study appearing in Science was carried out in close collaboration with the laboratories of Marek Mlodzik at Mount Sinai Icahn School of Medicine, New York and Thijn Brummelkamp from the Netherlands Cancer Institute, Amsterdam. A parallel study led by Anna Sablina and colleagues at KU Leuven in Belgium both validates and expands these findings, prominently proposing LZTR1 as a future textbook cornerstone of cellular growth regulation.

The study "LZTR1 is a regulator of RAS ubiquitination and signaling" was published in Science (DOI:10.1126/science.aap8210).

Authors: Johannes W. Bigenzahn, Giovanna M. Collu, Felix Kartnig, Melanie Pieraks, Gregory I. Vladimer, Leonhard X. Heinz, Vitaly Sedlyarov, Fiorella Schischlik, Astrid Fauster, Manuele Rebsamen, Katja Parapatics, Vincent A. Blomen, Andre? C. Mu?ller, Georg E. Winter, Robert Kralovics, Thijn R. Brummelkamp, Marek Mlodzik, Giulio Superti-Furga

The study was funded by the European Research Council (ERC), the Austrian Science Fund (FWF) and the Austrian Academy of Sciences (OEAW).

Media Contact

Eva Schweng
[email protected]
43-140-160-70051
@CeMM_News

http://www.cemm.oeaw.ac.at

https://cemm.at/news/

Related Journal Article

http://dx.doi.org/10.1126/science.aap8210

Share12Tweet7Share2ShareShareShare1

Related Posts

MSK’s Breakthrough Highlights from ASTRO 2025

October 2, 2025

Topical Cream Alleviates Skin Side Effects of Chemotherapy

October 2, 2025

Clinical Trial Explores Internal Radiation Therapy for Kidney Cancer Treatment

October 2, 2025

A Silent Partner: Ubiquitin Precursor Enhances Stress Resistance and Extends Lifespan

October 2, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    80 shares
    Share 32 Tweet 20
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    65 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

MSK’s Breakthrough Highlights from ASTRO 2025

Mental Health Advances Most Strongly Predict Increased Life Satisfaction

Registration and Scientific Program Now Open for Upcoming Plasma Physics Conference

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.