• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 15, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New mathematical model could be key to designing effective therapies for brain disorders

Bioengineer by Bioengineer
March 28, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The G-protein-coupled receptors are present in many neurological and psychological disorders thanks to the activation of G proteins. In addition to activating the G protein, they are also able to activate proteins responsible for other signalling routes, thereby achieving more than one effect at a time. These effects can be either beneficial or detrimental and for this reason controlling them by biasing the signal into the adequate direction is a therapeutic objective. One example of this type of therapy is chronic pain and therapy with opioid drugs. Morphine releases its therapeutic effects by binding to the μ-opioid receptor and activating the signalling route of the G-proteins, but also through the same receptor it produces the adverse effects through the β-arrestin route. A current research line found in pharmaceutical laboratories is the design of drugs which bind to the μ-opioid receptor specifically to activate the G-protein route.

The innovation in the design of new drugs must go hand in hand with the development of new theoretical frameworks which permit defining reliable measures for the pharmaceutical properties needing improvement. In the study, researchers delved deeper into the quantification of the bias of the biological signal through the inclusion of the receptors’ activity when not bound (constitutive activity or basal activity of the receptor). Thus, there is an increase in the pharmacological space accessible to the discovery and quantification of new drugs that are agonist, neutral antagonist and inverse antagonist (ligands which increase, do not alter or diminish the basal activities of receptors).

“Taking into account that for a specific receptor a signalling route could be linked to the therapeutic effects while another one can have adverse effects, the quantification of a biased signalling route of the receptors is fundamental for the design of more precise drugs with less side effects”, says Dr Jesús Giraldo, coordinator of the study and head of the Laboratory of Molecular Neuropharmacology and Bioinformatics of the UAB Institute of Neuroscience (INc). Dr Giraldo adds that “the next step will be to incorporate the model into the routine and systematic analysis of new drugs to verify its degree of validity in real situations”.

###

Media Contact
Jesús Giraldo
[email protected]
http://dx.doi.org/10.1016/j.tips.2019.01.002

Tags: Medicine/HealthneurobiologyPharmaceutical Science
Share12Tweet8Share2ShareShareShare2

Related Posts

Ocular Side Effects Associated with Semaglutide: New Insights

Ocular Side Effects Associated with Semaglutide: New Insights

August 15, 2025
blank

Quantum Gas Defies Warming: A Cool Breakthrough in Physics

August 15, 2025

FSU Chemists Pioneer Advanced X-Ray Material, Revolutionizing Thin Film Imaging

August 15, 2025

Deep Learning Model Accurately Predicts Ignition in Inertial Confinement Fusion Experiments

August 14, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Molecules in Focus: Capturing the Timeless Dance of Particles

    140 shares
    Share 56 Tweet 35
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    79 shares
    Share 32 Tweet 20
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    58 shares
    Share 23 Tweet 15
  • Predicting Colorectal Cancer Using Lifestyle Factors

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Acidulant and VERDAD N6 Enhance Tteokbokki Quality

Sustainable Innovation: Advancing High-Yield, Eco-Friendly Technologies

Innovative Network Offers Promising Advances in Predicting Health Issues in Dogs

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.