• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New kidney research sheds light on harms of certain drugs

Bioengineer by Bioengineer
January 24, 2019
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Richard Coward


Scientists have identified an enzyme that is a “master regulator” of kidney function that if excessively suppressed, can trigger renal failure. Their findings have implications for the use of existing drugs and the development of new pharmaceuticals.

As reported in Nature Communications, a global research team led by the University of Bristol studied how the activity of the enzyme GSK3 (Glycogen Synthase Kinase 3) affects the function of podocyte cells, which are crucial in enabling the kidneys to filter blood.

In the podocyte, the GSK3 enzyme (which exists in two related forms in humans, ? and ?) stops the body from leaking protein into the urine and so prevents the development of kidney failure. However, when both GSK3 forms are excessively suppressed, GSK3 is not present in sufficient quantities and this is highly detrimental both during development of the kidney and in the fully mature kidney, increasing the likelihood of renal failure.

One of the drugs currently on the market that is known to suppress GSK3 is lithium. This is commonly used as a psychiatric medication and for conditions including bipolar disease. Some patients taking this medicine for a long time, or at high doses, have been shown to leak large amounts of protein into their urine and develop kidney failure needing dialysis or a kidney transplant.

There has also been a drive from the pharmacological industry in the past to develop GSK3 inhibitors for treating diabetes, cancer and Alzheimer’s.

This has prompted the authors of the paper to urge pharma companies to ensure that when developing these drugs, they ensure that the drugs do not over-suppress both forms of GSK3.

“We think that patients who are taking lithium treatment now should regularly have a simple urine test to measure the amount of albumin they are excreting, as too much albumin is a sign of kidney disease” said lead author Richard Coward, Professor of Renal Medicine and Consultant Pediatric Nephrologist at Bristol Medical School and the Bristol Royal Hospital for Children and the University of Bristol.

“If these patients have increased levels of protein in their urine, they should consider reducing their dose of their lithium or switching medications. We think this could prevent some of them from developing kidney failure.

“Our research further suggests that it would be sensible to try and develop drugs that selectively inhibit one of the two forms of GSK3.”

Earlier studies had suggested that inhibiting GSK3 in the podocyte may be beneficial in treating kidney disease. This is probably due to them selectively inhibiting the ? form of this enzyme. However, this latest research shows that too much suppression of the activity of this enzyme is harmful.

The authors studied mice and flies that had GSK3 selectively knocked out in their podocyte (or podocyte-like) cells. This was performed during the development of the animals and also when they were fully mature. In both species it was highly detrimental. They also looked at the reason why the podocyte became unhealthy by studying podocyte cells in a dish.

The international team of researchers, which includes experts from the UK, Canada, USA and New Zealand, now plan to focus on a detailed understanding of the signalling pathways that GSK3 controls in the podocyte. By working out what the different isoforms (alpha and beta) control, further insights could reveal pathways that are “good” and “bad” for the podocyte, which could be targeted in the future to treat several different kidney diseases.

###

This work was funded by Kidney Research UK, the Medical Research Council, European Renal Association, Canadian Institute of Health and European Union’s 2020 research programme.

Media Contact
Caroline Clancy Cottle
[email protected]
44-011-742-82489

Tags: BiologyCell BiologyHealth Care Systems/ServicesHealth ProfessionalsMedicine/HealthMental Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

CK2–PRC2 Signal Drives Plant Cold Memory Epigenetics

August 2, 2025
blank

AI-Driven Protein Design Advances T-Cell Immunotherapy Breakthroughs

August 1, 2025

Melanthiaceae Genomes Reveal Giant Genome Evolution Secrets

August 1, 2025

“Shore Wars: New Study Tackles Oyster-Mangrove Conflicts to Boost Coastal Restoration”

August 1, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    38 shares
    Share 15 Tweet 10
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling EMT’s Role in Colorectal Cancer Spread

Gut γδ T17 Cells Drive Brain Inflammation via STING

Agent-Based Framework for Assessing Environmental Exposures

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.