• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, October 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New interaction between thin film magnets discovered

Bioengineer by Bioengineer
June 3, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Physicists of Johannes Gutenberg University Mainz lay the foundations for new three-dimensional spin structures

We ubiquitously stream videos, we download audiobooks to mobile devices, and we store huge numbers of photos on our devices. In short, the storage capacity we need is growing rapidly. Researchers are working to develop new data storage options. One possibility is the racetrack memory device where the data is stored in nanowires in the form of oppositely magnetized areas, so-called domains. The results of this research have recently been published in the scientific journal Nature Materials.

A research team from Johannes Gutenberg University Mainz (JGU) in Germany, together with colleagues from Eindhoven University of Technology in the Netherlands as well as Daegu Gyeongbuk Institute of Science and Technology and Sogang University in South Korea, has now made a discovery that could significantly improve these racetrack memory devices. Instead of using individual domains, in the future one could store the information in three-dimensional spin structures, making the memories faster and more robust and providing a larger data capacity.

“We were able to demonstrate a hitherto undiscovered interaction,” explained Dr. Kyujoon Lee of Mainz University. “It occurs between two thin magnetic layers separated by a non-magnetic layer.” Usually, spins align either parallel or antiparallel to each other. This would also be expected for such two separate magnetic layers. However, the situation is different in this work as the researchers have been able to show that in particular systems the spins in the two layers are twisted against each other. More precisely, they couple to be aligned perpendicular with one another at an angle of 90 degrees. This new interlayer coupling interaction was theoretically explained through theoretical calculations performed by the project partners at the Peter Grünberg Institute (PGI) and the Institute for Advanced Simulation (IAS) at Forschungszentrum Jülich.

The Mainz-based researchers examined a number of different combinations of materials grown in multi-layers. They were able to show that this previously unknown interaction exists in different systems and can be engineered by the design of the layers. Theoretical calculations allowed them to understand the underlying mechanisms of this novel effect.

With their results, the researchers reveal a missing component in the interaction between such layers. “These results are very interesting to the scientific community in that they show that the missing antisymmetric element of interlayer interaction exists,” commented Dr. Dong-Soo Han from JGU. This opens up the possibility of designing various new three-dimensional spin structures, which could lead to new magnetic storage units in the long term.

Professor Mathias Kläui, senior author of the publication, added: “I am very happy that this collaborative work in an international team has opened a new path to three-dimensional structures that could become a key enabler for new 3D devices. Through the financial support of the German Research Foundation and the German Academic Exchange Service, the DAAD, we were able to exchange students, staff, and professors with our foreign partners in order to realize this exciting work.”

###

Media Contact
Dr. Kyujoon Lee
[email protected]
http://dx.doi.org/10.1038/s41563-019-0370-z

Tags: Chemistry/Physics/Materials SciencesComputer ScienceElectrical Engineering/ElectronicsElectromagneticsNanotechnology/MicromachinesResearch/DevelopmentTechnology TransferTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Palladium Filters Pave the Way for More Affordable, Efficient Hydrogen Fuel Production

October 1, 2025
Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

Revolutionary Organic Molecule Poised to Transform Solar Energy Harvesting

October 1, 2025

Innovative Biochar Technology Offers Breakthrough in Soil Remediation and Crop Protection

October 1, 2025

CATNIP Tool Expands Access to Sustainable Chemistry Through Data-Driven Innovation

October 1, 2025
Please login to join discussion

POPULAR NEWS

  • New Study Reveals the Science Behind Exercise and Weight Loss

    New Study Reveals the Science Behind Exercise and Weight Loss

    91 shares
    Share 36 Tweet 23
  • Physicists Develop Visible Time Crystal for the First Time

    74 shares
    Share 30 Tweet 19
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    72 shares
    Share 29 Tweet 18
  • How Donor Human Milk Storage Impacts Gut Health in Preemies

    64 shares
    Share 26 Tweet 16

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Revolutionizing Materials: Long-Distance Remote Epitaxy

Spirituality Eases Occupational Stress in Nurses’ Lives

Edge States Shaped by Eigenvalue, Eigenstate Winding

Subscribe to Blog via Email

Success! An email was just sent to confirm your subscription. Please find the email now and click 'Confirm' to start subscribing.

Join 60 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.