• HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Saturday, January 23, 2021
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
    • BIOENGINEERING
    • SCIENCE NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • FORUM
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New insights into the control of inflammation

Bioengineer by Bioengineer
January 13, 2021
in Biology
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

The EGR1 transcription factor has distinct roles in early and late macrophage maturation stages, blunting macrophage activation and inflammation.

IMAGE

Credit: The Wistar Institute

PHILADELPHIA — (Jan. 13, 2021) — Scientists at The Wistar Institute discovered that Early Growth Response 1 (EGR1), a protein that turns on and off specific genes during blood cell development, inhibits expression of pro-inflammatory genes in macrophages. As part of their function to protect the body against pathogens, macrophages play a major role in initiation, maintenance, and resolution of inflammation. The discovery expands the understanding of how macrophages are set off and deactivated in the inflammatory process, which is critical in many normal and pathological conditions. These findings were published online in the journal Science Advances.

“By deepening the understanding of the role of EGR1, we shed light on the fundamental process of macrophage maturation, which is required for many aspects of the immune response including inflammation,” said Alessandro Gardini, Ph.D., assistant professor in the Gene Expression & Regulation Program at The Wistar Institute and senior author on the study. “Our data suggest EGR1 acts as a master regulator of inflammation in macrophages.”

Macrophages are specialized immune cells that eliminate foreign substances, cellular debris and cancer cells. Their multi-step maturation from progenitor cells in the bone marrow requires the concerted action of critical transcription factors that regulate expression of specific genes. EGR1 is one of these factors but its function remained elusive.

In response to tissue damage and infection, white blood cells of the immune system called monocytes can leave the bloodstream and infiltrate tissues, where they undergo an elaborate developmental program and mature into macrophages. Macrophages have the ability to “eat” pathogens, promote inflammation and elicit pathogen-specific immune responses.

The molecular mechanisms underlying this maturation process are not well defined. The same set of transcription factors acting in early monocyte development were thought to be involved in the conversion of monocytes to macrophages.

Gardini and colleagues used a model to recreate differentiation of monocytes to macrophages in vitro and performed a systematic genomic analysis of the role of EGR1 in this process. They found that EGR1 binds to different DNA regulatory regions in late-differentiating macrophages as opposed to progenitor cells differentiating into monocytes.

The lab previously uncovered a mechanism whereby EGR1 regulates gene expression in monocytes and macrophages by interacting with enhancers. These are short regulatory DNA sequences that, when bound by specific transcription factors, augment the expression of the associated genes.

In the new study, researchers found that EGR1 represses inflammatory enhancers in developing and mature macrophages, blunting their activation and the immune response.

“Our results suggest that the role of EGR1 in modulating inflammation may extend beyond development of blood cells and be relevant to the control of inflammation in health and disease conditions,” said Avery Zucco, Ph.D., a postdoctoral researcher in the Gardini lab and co-first author of the study.

###

Co-authors: Marco Trizzino (co-first author), Sandra Deliard, Fang Wang, Elisa Barbieri, Filippo
Veglia, and Dmitry Gabrilovich from Wistar.

Work supported by: National Institutes of Health (NIH) grants R01 HL141326 and T32 CA009171; grants from the American Cancer Society (RSG-18-157-01-DMC) and The G. Harold and Leila Y. Mathers Foundation. Support for The Wistar Institute facilities was provided by Cancer Center Support Grant P30 CA010815.

Publication information: EGR1 is a gatekeeper of inflammatory enhancers in human macrophages, Science Advances (2021). Online publication.

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the United States, Wistar has held the prestigious Cancer Center designation from the National Cancer Institute since 1972. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. wistar.org.

Media Contact
Darien Sutton
[email protected]

Tags: Biology
Share12Tweet7Share2ShareShareShare1

Related Posts

IMAGE

No more needles for diagnostic tests?

January 22, 2021
IMAGE

Shift in caribou movements may be tied to human activity

January 22, 2021

Rediscovery of the ‘extinct’ Pinatubo volcano mouse

January 22, 2021

Meta-Apo supports cheaper, quicker microbiome functional assessment

January 22, 2021
Next Post
IMAGE

Study find physical weathering of rock breakdown more important than previously recognized

IMAGE

Pivotal discovery in quantum and classical information processing

Leave a Reply Cancel reply

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

POPULAR NEWS

  • IMAGE

    The map of nuclear deformation takes the form of a mountain landscape

    54 shares
    Share 22 Tweet 14
  • People living with HIV face premature heart disease and barriers to care

    65 shares
    Share 26 Tweet 16
  • New drug form may help treat osteoporosis, calcium-related disorders

    40 shares
    Share 16 Tweet 10
  • New findings help explain how COVID-19 overpowers the immune system

    35 shares
    Share 14 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Tags

Technology/Engineering/Computer ScienceBiologyClimate ChangePublic HealthMaterialsInfectious/Emerging DiseasesMedicine/HealthcancerGeneticsCell BiologyEcology/EnvironmentChemistry/Physics/Materials Sciences

Recent Posts

  • Regulating the ribosomal RNA production line
  • A professor from RUDN University developed new liquid crystals
  • New technique builds super-hard metals from nanoparticles
  • No more needles for diagnostic tests?
  • Contact Us

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

© 2019 Bioengineer.org - Biotechnology news by Science Magazine - Scienmag.

Welcome Back!

Login to your account below

Forgotten Password?

Create New Account!

Fill the forms below to register

All fields are required. Log In

Retrieve your password

Please enter your username or email address to reset your password.

Log In