• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, August 27, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New insights into fermentation enzyme will lower the chemical industry’s carbon footprint

Bioengineer by Bioengineer
April 18, 2022
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the University of Tsukuba have obtained atomic-level insights into the structure of the phosphoketolase enzyme, which will help researchers optimize this enzyme for chemical feedstock synthesis

Tsukuba, Japan—Pharmaceuticals, plastics, and other industries use enzymes to help synthesize molecular feedstocks. Enzymes taken straight from microbes such as bacteria are often not optimal for industrial use; one issue is that they often do not survive the elevated temperatures that speed up a synthesis. Genetic engineering can help tailor enzymes for these purposes. Knowledge of the exact atom-by-atom structure of the original enzyme is important in understanding enzyme function in nature, thus providing insight as to how to optimize the genetic engineering of enzymes. However, X-ray crystallography, a common technique for determining an enzyme’s structure as a critical step in this process, can unfortunately alter its structure as well.

Image

Credit: University of Tsukuba

Researchers from the University of Tsukuba have obtained atomic-level insights into the structure of the phosphoketolase enzyme, which will help researchers optimize this enzyme for chemical feedstock synthesis

Tsukuba, Japan—Pharmaceuticals, plastics, and other industries use enzymes to help synthesize molecular feedstocks. Enzymes taken straight from microbes such as bacteria are often not optimal for industrial use; one issue is that they often do not survive the elevated temperatures that speed up a synthesis. Genetic engineering can help tailor enzymes for these purposes. Knowledge of the exact atom-by-atom structure of the original enzyme is important in understanding enzyme function in nature, thus providing insight as to how to optimize the genetic engineering of enzymes. However, X-ray crystallography, a common technique for determining an enzyme’s structure as a critical step in this process, can unfortunately alter its structure as well.

A technique known as cryogenic electron microscopy (cryo-EM) can provide a similar level of structural detail to that of X-ray crystallography whilst retaining the native enzyme’s structure. In fact, the 2017 Nobel Prize in Chemistry was awarded for using this technique to determine the structure of biological molecules. Now, in a study recently published in theJournal of Structural Biology, researchers from the University of Tsukuba and collaborating partners have used cryo-EM to determine the structure of the fermentation enzyme phosphoketolase. This work will facilitate genetic engineering of the enzyme for industrial syntheses.

“X-ray crystallography has revolutionized how researchers identify protein structures, but the development of alternative means that better reflect the structures seen in biology are invaluable,” explains senior author Professor Kenji Iwasaki. “Our use of cryo-EM as an imaging tool has uncovered previously obscured structural detail in phosphoketolase that will directly benefit the chemical industry.”

The researchers report two main findings. First, eight phosphoketolase units cluster together into one structure, known as an octamer. Second, they observed details of a chain of amino acids known as the QN-loop that may dictate whether the functional site of the enzyme is open or closed. This is a possible means of enhancing the chemical output of the enzyme.

X-ray crystallography obscures the structural detail provided by cryo-EM. The octamer was previously observed by X-ray crystallography but was thought to simply be a measurement artifact. Additionally, X-ray crystallography misses the open/closed structural details.

“Industry will now be able to correlate the function of phosphoketolase with its correct structure,” says Iwasaki. “We expect that these insights will remind researchers that X-ray crystallography isn’t necessarily the final word on enzyme structure; cryo-EM can offer valuable insights.”

The results of this study are important for optimizing the performance of a fermentation enzyme that is useful for performing chemical syntheses in industry. By using enzyme structural insights to maximize the success of genetic engineering, feedstocks can be produced for pharmaceuticals, plastics, and other materials in an environmentally sustainable manner.

###
The article, “High-resolution structure of phosphoketolase from Bifidobacterium longum determined by cryo-EM single-particle analysis,” was published in the Journal of Structural Biology at DOI: 10.1016/j.jsb.2022.107842

Funding: This research was partially supported by Platform Project for Supporting Drug Discovery and Life Science Research [Basis for Supporting Innovative Drug Discovery and Life Science Research (BINDS)] from AMED under Grant Number JP 17am0101072 (to K.I. and N.M.).

Tweet: Major advance in reducing the chemical industry’s carbon footprint may result from minor details missed in crystallographic experiments
Primary Keyword: Biochemistry
Secondary Keywords: Structural biology, protein functions, enzymology, biomolecules



DOI

10.1016/j.jsb.2022.107842

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

CircCOG5 Regulates Ferroptosis in Ovarian Cancer

August 27, 2025
blank

Heat Stress Impact on Aged Hens’ Health and Performance

August 27, 2025

Achieving Weight Goals Within Four Years: A Scientific Breakthrough

August 27, 2025

Exploring Fungal Diversity via Metabarcoding Techniques

August 27, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    148 shares
    Share 59 Tweet 37
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    81 shares
    Share 32 Tweet 20

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New Study Highlights Positive Impact of Diet and Exercise on Alcohol-Induced Liver Damage

CytoSorb® Enhanced Hemadsorption in Cardiac Surgery Outcomes

Amino Acids Drive Metabolic Dysfunction in Pulmonary Fibrosis

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.