• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New insights into bacterial toxins

Bioengineer by Bioengineer
September 5, 2017
in Biology
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A toxin produced by a bacterium that causes urinary tract infections is related to, yet different in key ways from, the toxin that causes whooping cough, according to new research. The findings, which will be published in the Sept. 8 issue of The Journal of Biological Chemistry, could aid in the development of new vaccines.

The key ingredient in the existing vaccine against whooping cough, or pertussis, is an inactive form of pertussis toxin. Active pertussis toxin works by entering white blood cells and chemically modifying a category of G proteins, which are essential signaling molecules. These modified G proteins are no longer able to bind to their receptors, which disrupts essential signaling inside the cell, locally disabling the immune response and allowing the bacteria to proliferate. Inactive pertussis toxin found in the vaccine teaches the immune system to avoid this silencing.

Proteins similar to the pertussis toxin are produced by many bacteria, but relatively little is known about what they do or how they work. A research team overseen by Jamie Rossjohn at Monash University in Melbourne, Australia, was interested in investigating the diversity of understudied pertussislike toxins and seeing what could be learned from them.

"[Pertusis toxin] is really quite an amazing molecule, and it's been highly essential in the vaccine against whooping cough," said Dene Littler, the research fellow who led the work. "I got really excited about the idea that there could be other forms of this toxin in other bacteria, perhaps in bacteria that cause long-term chronic infections where it is quite necessary for bacteria to turn off the immune system in order to live."

Littler and his colleagues searched for DNA sequences similar to those encoding pertussis toxin among the published genomes of bacteria. They found a number of pertussislike toxin sequences in the genomes of the subset of strains of E. coli that can live benignly in the gut but cause symptoms if they enter the blood or urinary tract. This was a clue that pertussislike toxins are widespread among pathogenic E. coli, but it was unknown whether the E. coli pertussislike toxin, or EcPlt, works the same way that pertussis toxin does.

"I was particularly interested in what happened once the toxins [produced by E. coli] were inside the cell," Littler said. Many studies of bacterial toxins examine how toxins first enter cells and the effect on the cell, not precisely how the toxin changes – and is changed in – the intracellular environment.

The team carried out biochemical studies on EcPlt from a bacterial strain that causes urinary tract infections. They produced the first report of the EcPlt's active form inside human cells, describing how the chemical environment inside the cell caused the protein to change shape and activate.

They also found that, although EcPlt modifies the same G protein and disrupts the same signaling pathway as the pertussis toxin does, it does so in a slightly different manner. Pertussis toxin is able to modify only one specific amino acid in its human G protein target; if that amino acid changes, the G protein is no longer affected by the pertussis toxin. EcPlt, on the other hand, modified a different amino acid but similarly disrupted G-protein signaling.

"Perhaps the way that pertussis does [this modification] is simply harder for human cells to undo," Littler said, speculating about why the whooping cough caused by pertussis toxin is a more severe disease than urinary tract infections caused by EcPlt-producing bacteria.

Littler is hopeful that understanding the natural diversity of pertussislike toxins could help improve existing vaccines and create new ones.

"Our toxin structures help identify how pertussislike toxins function and help define ways to produce inactive versions," Littler said. "The pertussis toxin component of the DTaP vaccine is highly successful. Vaccines directed against other pertussislike proteins could be equally efficacious in preventing disease."

###

The work was funded by The National Health and Medical Research Council, the Australian Research Council and the Australian Synchrotron Capital Access Program.

About the Journal of Biological Chemistry

JBC is a weekly peer-reviewed scientific journal that publishes research "motivated by biology, enabled by chemistry" across all areas of biochemistry and molecular biology.

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions. For more information about ASBMB, visit http://www.asbmb.org.

Media Contact

Sasha Mushegian
[email protected]
@asbmb

http://www.asbmb.org

http://dx.doi.org/10.1074/jbc.M117.796094

Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Unveiling Wheat’s Defense Against WSMV: A Transcriptomic Study

November 4, 2025
blank

Unveiling Wheat’s Defense Against WSMV: A Transcriptomic Study

November 4, 2025

Unraveling the Connections Between Brain Development and Mental Health

November 4, 2025

ASBMB Announces Launch of Insights in Biochemistry and Molecular Biology, a New Journal Showcasing Breakthroughs Across Molecular Life Sciences

November 4, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1298 shares
    Share 518 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Plasma Treatment Enhances Antibacterial Performance of Silica-Based Materials

Nomogram Developed for Sarcopenia Screening in Osteoporosis

Projectile Impact on Human Bone and Polyurethane Simulant

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.