• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, December 8, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New insights into 3D printing of spacers and membranes

Bioengineer by Bioengineer
November 6, 2020
in Chemistry
Reading Time: 2 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

To also address the controversies on the feasibility of 3D printing for membranes, researchers from SUTD and NTU have coined a new term ‘hybrid additive manufacturing’ for the water treatment industry

IMAGE

Credit: SUTD

3D printing has seen great advancements in various aspects over the past few decades, and many industries have seen innovative breakthroughs in their respective fields. Amongst them, the water treatment industry has also reaped benefits off the prospects of 3D printing. High performance spacers and membranes can be fabricated by 3D printing, and they help increase permeate production while minimising energy consumption in purification processes.

Researchers from Nanyang Technological University (NTU) and the Singapore University of Technology and Design (SUTD) reviewed the recent efforts, shortcomings as well as the conflicting reports of 3D printing in membrane-based water treatment (refer to figure). Their research paper entitled ‘A review on spacers and membranes: Conventional or hybrid additive manufacturing?’ has been published in Water Research.

In the paper, they showed the potential of 3D printed spacers. The great freedom of design in 3D printing enables the fabrication of complex and innovative spacers, which was previously impossible with conventional heat extrusion methods. These spacers were able to reduce the number of dead zones within the flow channel, and help mitigate detrimental membrane fouling problems. Some spacer designs such as the helical spacer, turbospacer, and column spacer were even able to reduce energy consumption.

An interesting perspective was also presented in the paper regarding the feasibility of 3D printed membranes. Microfiltration membranes (MF) with pore sizes

In an attempt to resolve this confusion, the paper critically analyses these 3D printed membranes, especially on 3D printing’s role in the overall fabrication process. Hybrid additive manufacturing, a process where 3D printing is used in conjunction with other established fabrication methods, is also introduced in the paper. It shows how 3D printing can still be a powerful tool in the fabrication of membranes when used together with other established processes despite its inadequate printing resolution.

“3D printing is gradually evolving from a single-standalone process to a multi-integrated process. The application continues to grow in the water treatment industry, especially the membrane-based technologies. Future focus is expected to shift from lab scale prototyping to large scale manufacturing,” said principal investigator Associate Professor Chong Tzyy Haur from NTU.

“It will not be an easy challenge to overcome upscaling and material limitations, but consistent research efforts are already evident today. Potentially, 4D printing can even be a possibility in the future to fabricate smart spacers and membranes that adapt to its surrounding environment,” explained co-author Professor Chua Chee Kai from SUTD.

###

Media Contact
Jessica Sasayiah
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.watres.2020.116497

Tags: Biomedical/Environmental/Chemical EngineeringChemistry/Physics/Materials SciencesMaterialsResearch/DevelopmentTechnology/Engineering/Computer Science
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Iridium Catalysis Enables Piperidine Synthesis from Pyridines

December 3, 2025
Neighboring Groups Speed Up Polymer Self-Deconstruction

Neighboring Groups Speed Up Polymer Self-Deconstruction

November 28, 2025

Activating Alcohols as Sulfonium Salts for Photocatalysis

November 26, 2025

Carbonate Ions Drive Water Ordering in COâ‚‚ Reduction

November 25, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    204 shares
    Share 82 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    121 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    107 shares
    Share 43 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    70 shares
    Share 28 Tweet 18

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Advanced Solar Irradiance Estimation for Vehicle Cooling

Resection Margins and Local Recurrence in Myxofibrosarcoma

Boosting Cancer Immunotherapy by Targeting DNA Repair

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.