• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, July 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New insight into unique sugar transport in plants

Bioengineer by Bioengineer
January 25, 2019
in Biology
Reading Time: 4 mins read
0
ADVERTISEMENT
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Bjorn Panyella Pedersen, Aarhus University


Sugar transport through Sugar Transport Proteins (STP) is unique to plants, and is important for the proper development of plant organs such as pollen. STPs are also used to concentrate sugars in specific tissues like fruit, and they play an important role in the plant defence against fungal attacks from e.g. rust and mildew.

Sugar is generated in plant leaves by photosynthesis, and is transported as the disaccharide sucrose to other parts of the plant through the sieve tissue. In sink tissues such as roots, pollen and fruits, the plant can absorb the sugar either as sucrose or, after cleavage, as the monosaccharides glucose and fructose.

Uptake of glucose and other monosaccharides is driven by STPs that move sugar through the otherwise impermeable cell membrane using an acid gradient. These proteins have some specific properties compared to similar proteins from animals or bacteria. They have an extremely high affinity for sugar; in fact, they bind 1000 times more strongly to sugars than similar proteins in humans. At the same time they maintain a very high level of activity over a broad pH spectrum compared to other acid-driven sugar transporters.

First glace at a unique transport mechanism

As the first in the world, a small group of researchers from the Department of Molecular Biology and Genetics at Aarhus University in Denmark has solved a structure of a STP sugar transport protein. With this, the researchers have been able to provide explanations for the particular transport characteristics of STPs.

STPs are proteins located in the cell membrane, and these are very difficult to work with. Therefore, it often takes many years to obtain new results, and this has also been the case with this study, where the researchers have had to change strategy and apply new methods several times.

“It has been an extremely challenging process. Along the way, we have had to let go of very promising results and start all over with new methods because the quality of the data from the traditional structural methods was simply not good enough,” says Postdoc Peter Aasted Paulsen, who, as first author, describes the results in the prestigious journal Nature Communications. “It has been frustrating to let go of something that is almost “good enough” to start all over from a new angle, but it certainly was necessary. One can say that the many small aha moments we gained through the many attempts, were what ultimately solved the problems of getting data of sufficiently high quality. It was fantastic when it finally worked! “

A new domain surprises

With the new structure, the researchers show that the STPs overall form resemble other sugar transporters from e.g. humans. But the structure also holds surprises. Peter Aasted Paulsen highlights a new domain that has not been described before. “Over the binding pocket where sugar is located, the STPs have a novel small domain that resembles a lid that is held in place with an unusual bond, a so-called disulfide bridge. It was a completely unexpected observation that immediately sparked the imagination.”

To investigate the function of the domain, the researchers made a version of the protein in which this bond was removed. With this change, the protein loses its ability to transport sugar efficiently at certain pH values. If you compare these results with an analysis of the structure, it can be seen that the lid is held in place by means of the bond, thereby creating a favourable environment for acid binding to a specific acid binding pocket. This binding causes a portion of the protein to be pushed toward the sugar molecule, thereby creating the very high affinity for sugar.

“Structural biology is special when it comes to explaining the very detailed mechanisms at play in proteins,” says Assistant Professor Bjørn Panyella Pedersen, head of the research group. “It has been extremely satisfying to experience how structure and biochemistry have been combined here to explain something completely fundamental about sugar transport in plants we did not know before.”

The results might make it easier to develop resistant crops

“From our slightly nerdy point of view, it has been extremely exciting to be able to answer these very fundamental questions,” says Bjørn Panyella Pedersen. “We started working with the human sugar transporters, but since many of the big issues in this field have been answered over the past few years, we decided to turn our focus on sugar uptake in other organisms.”

“STPs have very distinct characteristics, and it is very exciting to be able to improve our understanding of how they work,” continues Bjørn Panyella Pedersen, “It is especially interesting that the results we now describe are related to how many of the plants’ organs develop correctly, and at the same time have proved to be an important contribution to plants’ response to fungal attacks. Some species of wheat are fungal resistant, and our results help to explain why.”

###

The results have been published in Nature Communications:

Peter Aasted Paulsen, Tânia F. Custódio & Bjørn Panyella Pedersen:

Crystal structure of the plant symporter STP10 illuminates sugar uptake mechanism in monosaccharide transporter superfamily. https://doi.org/10.1038/s41467-018-08176-9.

For further information, please contact

Asisstant Professor Bjørn Panyella Pedersen

Department of Molecular Biology and Genetics, Aarhus University, Denmark

[email protected] – +45 2972 3499

Postdoc Peter Aasted Paulsen

Department of Molecular Biology and Genetics, Aarhus University, Denmark

[email protected]

Media Contact
Bjorn Panyella Pedersen
[email protected]
45-29-72-34-99

Original Source

http://mbg.au.dk/en/news-and-events/news-item/artikel/new-insight-into-unique-sugar-transport-in-plants/

Related Journal Article

http://dx.doi.org/10.1038/s41467-018-08176-9

Tags: BiochemistryBiologyBiotechnologyCell BiologyMicrobiologyMolecular BiologyPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

July 20, 2025
blank

Archaeal Ribosome Shows Unique Active Site, Hibernation Factor

July 17, 2025

Mobile Gene Regulator Balances Arabidopsis Shoot-Root Growth

July 16, 2025

Mobile Transcription Factor Drives Nitrogen Deficiency Response

July 16, 2025
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • AI Achieves Breakthrough in Drug Discovery by Tackling the True Complexity of Aging

    70 shares
    Share 28 Tweet 18
  • USF Research Unveils AI Technology for Detecting Early PTSD Indicators in Youth Through Facial Analysis

    43 shares
    Share 17 Tweet 11
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Additive Manufacturing of Monolithic Gyroidal Solid Oxide Cells

Machine Learning Uncovers Sorghum’s Complex Mold Resistance

Pathology Multiplexing Revolutionizes Disease Mapping

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.