• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, November 11, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New imaging molecule captures brain changes tied to progressive multiple sclerosis

Bioengineer by Bioengineer
July 1, 2019
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Novel PET tracer detected abnormal inflammation in the cerebral grey matter of patients with MS, reflecting patients’ clinical severity

Secondary progressive multiple sclerosis (MS) is a relentless disease. Over time, patients experience worsening physical, mental and mood-related symptoms. And yet, even as their symptoms progress, the brain white matter lesions found on a patient’s MRI scans often remain unchanged. Suspecting that changes in the grey matter regions of the brain may be playing a critical role in the disease’s progression, investigators from Brigham and Women’s Hospital conducted an initial study assessing the differences in the activity of microglial cells in the grey matter regions of healthy volunteers versus those with MS. Using a novel tracer molecule known as [F-18]PBR06 and Positron Emission Tomography (PET) imaging, the team detected widespread and abnormal activation of microglia in MS patients and a link to brain atrophy, physical disability, and progressive MS. The team’s findings are published in the July 2019 issue of Neurology: Neuroimmunology & Neuroinflammation, an official journal of the American Academy of Neurology.

“There’s more to multiple sclerosis than white matter lesions,” said corresponding author Tarun Singhal, MD, a neurologist at the Ann Romney Center for Neurologic Diseases at the Brigham. “There’s evidence of inflammation in the brain’s grey matter, not just the white matter. Here we have a technique to detect it and a path to develop this technique for use in the clinic in looking for early signs of progression and the effects of treatments.”

Currently, there are several disease-modifying drugs on the market to help patients with relapsing remitting MS experience fewer and less severe relapses, but few drugs exist for patients with secondary progressive MS. Investigations to develop new drugs are underway, but many questions remain about the underlying biology of the disease and how it progresses.

The new study leverages the novel radioisotope, [F-18]PBR06, a tracer that targets a specific protein (TSPO) found in activated microglia, key immune cells found in the brain. Many other research projects use C-11, an isotope with a much shorter half-life. But, unlike C-11, the F-18 tracer has a significantly longer half-life and a higher potential to be used in the clinic.

For the pilot study, investigators evaluated results for 12 patients with MS — seven with relapsing remitting MS and five with secondary progressive MS — and compared it with healthy controls using the F-18 tracer. They found more grey matter microglial activation in the MS patients as compared to healthy controls, particularly in hippocampus, parahippocampus, cingulate gyrus and amygdala regions of the brain. These regions of the brain are known to influence critical processes, including emotion, memory and cognition, all of which may be affected in MS patients. Brain structures in the deep grey matter, particularly the thalamus, showed higher microglial activation in secondary progressive MS than in the relapsing remitting MS patients and healthy controls. This correlated significantly with physical disability and brain atrophy.

The authors note that the pilot study is small and its findings will require additional confirmation in larger studies with a longitudinal design, but it offers the first assessment of [F-18]PBR06 PET for grey matter changes in MS, demonstrating the potential value of this technique.

“Unless we can measure the progress of a disease accurately, our ability to treat that disease remains limited,” said Singhal. “When a patient tells us that their symptoms are worsening, we want to have a technology that can reflect that, or better yet, predict the progression before it is clinically obvious. This technique may have the potential to do that and give us critical insights into neurodegeneration and its relationship with neuroinflammation.”

###

Other authors of this paper include Kelsey O’Connor, Shipra Dubey, Hong Pan, Renxin Chu, Shelley Hurwitz, Steven Cicero, Shahamat Tauhid, David Silbersweig, Emily Stern, Marie Kijewski, Marcelo DiCarli, Howard L Weiner, and Rohit Bakshi.

Funding for this work was provided by Nancy Davis Foundation’s “Race to Erase MS” program, Ann Romney Center for Neurologic Diseases, Harvard NeuroDiscovery Center, and Water Cove Charitable Foundation. Co-authors have received grant support from Spectrum Dynamics, Merck-Serono and Sanofi-Genzyme, Verily Life, EMD Serono, and Sanofi-Genzyme, and consulting fees from GE, Sanofi, Biogen, Tiziana, Novartis, Merck-Serono, Teva, Bayer, Celgene, EMD Serono, Genentech, Guerbet, Sanofi-Genzyme, and Shire.

Paper cited: Singhal, T et al. “Grey Matter Microglial Activation in Relapsing versus Progressive Multiple Sclerosis: An Initial Experience using [F-18]PBR06-PET” Neurology: Neuroimmunology & Neuroinflammation. DOI: 10.1212/NXI.0000000000000587

Media Contact
Elaine St Peter
[email protected]
http://dx.doi.org/10.1212/NXI.0000000000000587

Tags: Medicine/Healthneurobiology
Share12Tweet8Share2ShareShareShare2

Related Posts

Astrocytic PKM2 Deletion Impacts Neuronal Death Post-TBI

November 11, 2025

Shared Genetic Risks in Neurological and Psychiatric Disorders

November 11, 2025

Rising Epidemic of Chronic Diseases in Animals: A Growing Concern

November 11, 2025

Caregiver Challenges: Anxiety and Burden in Dementia

November 11, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    316 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    208 shares
    Share 83 Tweet 52
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    140 shares
    Share 56 Tweet 35
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1305 shares
    Share 521 Tweet 326

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Gravity’s Role in Fuel Cell Water Management

Astrocytic PKM2 Deletion Impacts Neuronal Death Post-TBI

Multirotor UAVs Perch, Land, Detach with Guards

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.