• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, September 6, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New imaging analysis pipeline could aid in drug and vaccine development

Bioengineer by Bioengineer
May 20, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Photo courtesy of Huang Lab

From testing drugs to developing vaccines, the close study of the immune system is key to improving real-world health outcomes. T-cells are integral to this research, as these white blood cells help tailor the body’s immune response to specific pathogens.

With lattice light-sheet microscopy (LLSM), scientists have been able to closely examine individual cells, such as T-cells, in 4D. But with limited data points, there wasn’t an effective way to analyze the LLSM data.

A new paper by researchers from the Pritzker School of Molecular Engineering (PME) at the University of Chicago, published May 20 in the journal Cell Systems, introduces a solution–a pipeline for lattice light-sheet microscopy multi-dimensional analyses (LaMDA).

The Pritzker Molecular Engineering researchers who authored the paper include graduate students Jillian Rosenberg and Guoshuai Cao of the Huang lab group. They first set out to study T-cell function using high-dimensional microscopy, and then they identified the need for an effective method of analysis. So, they pivoted to developing the LaMDA pipeline.

“We realized that the images are amazing, but they were being underutilized due to a lack of available analysis techniques,” said Cao.

To fill that gap, the researchers decided to shift the paradigm. Instead of treating each cell as a data point, they found a way to treat each molecule as a data point, increasing the total number of data points. This made it possible to conduct a sophisticated analysis.

“We have developed a pipeline to enable machine learning and complex analyses on these videos, which was not previously feasible,” Rosenberg explained. “These analyses allow us to identify differences between molecules that we cannot identify by eye.”

LaMDA could help develop new vaccines

Combining high-dimensional imaging and big data analyses, LaMDA can reveal and even predicT-cellular states. According to Rosenberg, one of the most promising aspects of LaMDA is its potential to predict biological responses, without the need for complex experiments.

More research is needed to further confirm this predictive capacity. However, she explained, “the potential to predicT-cellular states and subcellular signaling is a very powerful asset of LaMDA.”

This means LaMDA could have numerous medical applications, such as drug testing and vaccine development, in addition to expanding the knowledge of T-cell biology.

“Researchers or pharmaceutical companies could use LaMDA to determine how certain drugs are resulting in subtle changes in subcellular signaling, which provides information on both drug safety and efficacy,” said Rosenberg.

“Our LaMDA pipeline could also be extended to the development of peptide vaccines to treat infection, cancer, and autoimmunity,” she added, “or be used to study thymic education or peripheral tolerance, two very important topics in T-cell biology.”

A research tool for T-cells and beyond

Although the researchers began by studying T-cell receptors, creating the LaMDA pipeline quickly became their focus. Using previously known facts about T-cells, they were able to validate LaMDA as an effective analysis pipeline that can be expanded to other fields of study.

“While we ultimately want to learn more about T-cells, our purpose in creating LaMDA was to provide a tool for other researchers to use for future discoveries,” said Rosenberg. The research team intentionally designed LaMDA to be easy for other scientists to use, including those who may be unfamiliar with data science techniques.

“We believe this analysis pipeline will benefit users of high-dimensional microscopy across all fields of science,” said Cao.

It’s worth noting that the researchers have only tested LaMDA in a single molecule, under a few different conditions. “To make this pipeline more robust, it should be validated on other cell types, molecules, and conditions to prove its wide applicability and address any potential unforeseen issues,” Cao said.

One day, the researchers hope the LaMDA pipeline can also be used to study the interaction of multiple molecules.

###

Fernanda Borja-Prieto, an undergraduate student at PME, and Jun Huang, an assistant professor of molecular engineering at the school, are also authors of the paper.

Citation: “Lattice Light-Sheet Microscopy Multi-Dimensional Analyses (LaMDA) of T-Cell Receptor Dynamics Predict T-Cell Signaling States.” Jillian Rosenberg et al. Cell Systems, 2020. DOI: 10.1016/j.cels.2020.04.006

Funding: This work was supported by NIH New Innovator Award 1DP2AI144245 and NSF Career Award 1653782 (To J.H.). J.R. is supported by the NSF Graduate Research Fellowships Program (DGE-1746045).

Media Contact
Ryan Goodwin
[email protected]

Original Source

https://pme.uchicago.edu/news/new-imaging-analysis-pipeline-could-aid-drug-and-vaccine-development

Related Journal Article

http://dx.doi.org/10.1016/j.cels.2020.04.006

Tags: cancerImmunology/Allergies/AsthmaMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

Improving Sleep in Shift-Work Nurses: A Meta-Analysis

September 5, 2025
blank

Microgravity Impacts Testicular Health via C/EBP-β/MeCP2/Wnt Axis

September 5, 2025

New Insights in Thoraco-Lumbar Spine Modeling

September 5, 2025

Groundbreaking Discoveries in Energy Metabolism and Immune Dynamics Poised to Revolutionize Head and Neck Cancer Therapy

September 5, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    150 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    115 shares
    Share 46 Tweet 29
  • Modified DASH Diet Reduces Blood Sugar Levels in Adults with Type 2 Diabetes, Clinical Trial Finds

    61 shares
    Share 24 Tweet 15

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Improving Sleep in Shift-Work Nurses: A Meta-Analysis

Microgravity Impacts Testicular Health via C/EBP-β/MeCP2/Wnt Axis

Natural Medicines Target Tumor Blood Vessels to Halt Cancer Progression

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.