• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, December 26, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New hydrogel that cuts in half recovery time from muscle injuries

Bioengineer by Bioengineer
March 31, 2021
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

It has been designed and tested, at the preclinical level, by the UPV and the CIBER-BBN

IMAGE

Credit: UPV

A team from the Universitat Politècnica de València (UPV) and the CIBER Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) has designed and tested, at a preclinical level, a new biomaterial for the treatment and recovery of muscle injuries. It is a boron-loaded alginate hydrogel, which would be administered with a subcutaneous injection. According to the tests carried out so far -in animal models-, it is capable of regenerating damaged muscle very rapidly -specifically, in half the time it takes for it to regenerate naturally.

The scientific advance could also be applied to the prevention and treatment of muscle atrophy associated with aging. The results of the work of these Spanish researchers have been published in the journal Materials Science & Engineering C.

The key to the high performance of this biomaterial lies in the release of boron, with which the hydrogel is loaded in a simple way. When released, it stimulates the integrins -proteins which are present in all cells of the body and play a fundamental role in the adhesion of cells to the extracellular matrix-, which generates a correct formation of tissues.

According to the UPV and CIBER-BBN team, the simultaneous stimulation of the integrins that bind fibronectin and the boron ion transporter (NaBC1) significantly improves muscle regeneration at the anatomical level. It does so because it induces a greater number of adhesions, and of greater size, in undifferentiated muscle cells, which are those that participate in muscle regeneration after an injury, which ultimately favours the formation of differentiated myotubes that are necessary for the correct creation of new regenerating muscle fibres.

“In the tests that we have carried out in our laboratories after inducing an acute injury with cardiotoxin (cobra snake venom) in mice, the activation of NaBC1 accelerated the process of muscle regeneration. We verified that, by adding boron to damaged muscle cells, their level of adhesion increased, and now they adhered in a faster and more robust way, allowing the muscle to regenerate in a shorter period of time”, adds Dr. Patricia Rico, researcher at the CIBER-BBN at the Centre for Biomaterials and Tissue Engineering of the Universitat Politècnica de València.

Thus, this work suggests a simple and novel way to achieve muscle regeneration through the interaction between specific receptors on the cell membrane. “If, for example, a second degree fibrillar tear takes 30 days to regenerate, the use of our hydrogel reduces the recovery time to 15 days,” remarks Patricia Rico.

Dr. Rico’s team is currently working on the study of the application of this new biomaterial to the treatment of muscular dystrophies such as Duchenne muscular dystrophy, a rare inherited disease that affects 1 in 100,000 children. “Our objective is to assess the possibilities of our system for the treatment of this dystrophy, which usually manifests between two and three years of age and which, being a degenerative disease, drastically reduces the life expectancy of these children,” concludes Patricia Rico.

###

Media Contact
Luis Zurano Conches
[email protected]

Original Source

http://www.upv.es/noticias-upv/noticia-12802-nuevo-biomater-en.html

Related Journal Article

http://dx.doi.org/10.1016/j.msec.2021.112003

Tags: Cell BiologyMedicine/HealthTechnology/Engineering/Computer ScienceTrauma/Injury
Share13Tweet8Share2ShareShareShare2

Related Posts

Peptide Ratios Advance Post-Mortem Interval Estimation

December 26, 2025

Antibody-Drug Targets in Breast Cancer Metastases Explored

December 26, 2025

Nurses’ Earthquake Experiences Shape Professional Practices

December 26, 2025

Muse Cells Reduce Neurodegeneration in Parkinson’s Disease

December 26, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Peptide Ratios Advance Post-Mortem Interval Estimation

Antibody-Drug Targets in Breast Cancer Metastases Explored

Nurses’ Earthquake Experiences Shape Professional Practices

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.