• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, August 29, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Cancer

New Hope in Fight Against Aggressive, Often Hard to Treat Brain Tumor

Bioengineer by Bioengineer
September 25, 2016
in Cancer
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers from the University of Southampton have discovered a potential way of stopping one of the most aggressive types of brain tumor from spreading, which could lead the way to better patient survival.

Credit: Dailyecho.co.uk
Credit: Dailyecho.co.uk

Glioblastoma is one of the most common types of malignant brain tumors in adults. They are fast growing and can spread easily. The tumor has threadlike tendrils that extend into other parts of the brain making it difficult to remove it all.

Although there have been great advances made in the treatment of leukemias and other cancers, little is known about how Glioblastomas are formed and how these tumors infiltrate the brain tissue.

Published in Molecular Neurobiology, the study led by Dr Elodie Siney under the supervision of Dr Sandrine Willaime-Morawek, Lecturer in Stem Cells and Brain Repair at the University, analysed how enzymes called ADAMs affect the movement and function of the human tumor cells.

The findings suggest that if you are able to block specific enzymes called ADAM10 and ADAM17 the tumor stops growing and spreading. It also moves the cancer cells away from the place where they were growing which could allow them to be removed through traditional cancer treatments such as radiotherapy, chemotherapy or surgery.

“When confirmed in animal models of glioblastoma, this finding will be of great importance for patients and clinicians,” said Sandrine. “Glioblastoma is a devastating disease which is often untreatable. We have found that blocking ADAMs may lead to reduced tumor growth and less recurrence following conventional treatments, improving the chance of complete surgical removal and improving survival rates.”

Web Source: University of Southampton.

Reference List:

Elodie J. Siney, Alexander Holden, Elizabeth Casselden, Harry Bulstrode, Gareth J. Thomas, Sandrine Willaime-Morawek. Metalloproteinases ADAM10 and ADAM17 Mediate Migration and Differentiation in Glioblastoma Sphere-Forming Cells. Molecular Neurobiology, 2016; DOI: 10.1007/s12035-016-0053-6

The post New Hope in Fight Against Aggressive, Often Hard to Treat Brain Tumor appeared first on Scienmag.

Share12Tweet8Share2ShareShareShare2

Related Posts

Metabolomic Insights: Prostate Cancer Diagnosis Explored

August 29, 2025

Inhibiting Protein Control Pathway Reduces Rhabdomyosarcoma Growth in Mice

August 29, 2025

Common Anti-Inflammatory Drug Shows Promise in Slowing Blood Cell Mutation Linked to Cardiovascular Disease Risk

August 29, 2025

UCLA Scientists Create Ready-to-Use Immunotherapy for Metastatic Kidney Cancer

August 29, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    142 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    82 shares
    Share 33 Tweet 21

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

CellSpark: Ignite Electrophysiology Discovery Through Simulation

SAFeguard Study: Insulin Glargine’s Efficacy in Diabetes

Innovative Regenerative Methods for Healing Skin Wounds

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.