• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Saturday, August 2, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Neuroscience

New High-Tech Lab Records the Brain and Body in Action

Bioengineer by Bioengineer
March 7, 2014
in Neuroscience
Reading Time: 3 mins read
1
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

How does an autistic child take in information when he sits in a classroom abuzz with social activity? How long does it take someone with multiple sclerosis, which slows activity in the brain, to process the light bouncing off the windshield while she drives?

Lab Records the Brain and Body in Action

GlassBrain, a new imaging technology created by Gazzaley’s team, creates vivid visualizations of the brain’s electrical pulses in real time.

Until recently, the answers to basic questions of how diseases affect the brain – much less the ways to treat them – were lost to the limitations on how scientists could study brain function under real-world conditions. Most technology immobilized subjects inside big, noisy machines or tethered them to computers that made it impossible to simulate what it’s really like to live and interact in a complex world.

But now UC San Francisco neuroscientist Adam Gazzaley, MD, PhD, is hoping to paint a fuller picture of what is happening in the minds and bodies of those suffering from brain disease with his new lab, Neuroscape, which bridges the worlds of neuroscience and high-tech.

In the Neuroscape lab, wireless and mobile technologies set research participants free to move around and interact inside 3-D environments, while scientists make functional recordings with an array of technologies. Gazzaley hopes this will bring his field closer to understanding how complex neurological and psychiatric diseases really work and help doctors like him repurpose technologies built for fitness or fun into targeted therapies for their patients.

“I want us to have a platform that enables us to be more creative and aggressive in thinking how software and hardware can be a new medicine to improve brain health,” said Gazzaley, an associate professor of neurology, physiology and psychiatry and director of the UCSF Neuroscience Imaging Center. “Often, high-tech innovations take a decade to move beyond the entertainment industry and reach science and medicine. That needs to change.”

As a demonstration of what Neuroscape can do, Gazzaley’s team created new imaging technology that he calls GlassBrain, in collaboration with the Swartz Center at UC San Diego and Nvidia, which makes high-end computational computer chips. GlassBrain creates vivid, color visualizations of the structures of the brain and the white matter that connects them, as they pulse with electrical activity in real time.

These brain waves are recorded through electroencephalography (EEG), which measures electrical potentials on the scalp. Ordinary EEG recordings look like wavy horizontal lines, but GlassBrain turns the data into bursts of rhythmic activity that speed along golden spaghetti-like connections threading through a glowing, multi-colored glass-like image of a brain. Gazzaley is now looking at how to feed this information back to his subjects, for example by using the data from real-time EEG to make video games that adapt as people play them to selectively challenge weak brain processes.

Gazzaley has already used the technology to image the brain of former Grateful Dead drummer Mickey Hart as he plays a hypnotic, electronic beat on a Roland digital percussion device with NeuroDrummer, a game the Gazzaley Lab is designing to enhance brain function through rhythmic training. Hart, whose brain is healthy, is collaborating with Gazzaley to develop the game and performed on NeuroDrummer while immersed in virtual reality on an Oculus Rift at the Neuroscape lab opening on March 5.

The Neuroscape lab will be available to all UCSF researchers who study the brain. And Gazzaley ultimately hopes it will aid in the development of therapies to treat diseases as various as Alzheimer’s, post-traumatic stress disorder, attention deficit and hyperactivity disorder, schizophrenia, autism, depression and multiple sclerosis.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy, a graduate division with nationally renowned programs in basic biomedical, translational and population sciences, as well as a preeminent biomedical research enterprise and two top-ranked hospitals, UCSF Medical Center and UCSF Benioff Children’s Hospital.

Story Source:

The above story is based on materials provided by UCSF News Office, Laura Kurtzman.

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Redox biomarker could predict progression of epilepsy

October 5, 2016
blank

Neural membrane’s structural instability may trigger multiple sclerosis

October 5, 2016

Scientists find new path in brain to ease depression

October 5, 2016

Key players responsible for learning and memory formation uncovered

October 3, 2016
Please login to join discussion

POPULAR NEWS

  • Blind to the Burn

    Overlooked Dangers: Debunking Common Myths About Skin Cancer Risk in the U.S.

    60 shares
    Share 24 Tweet 15
  • Dr. Miriam Merad Honored with French Knighthood for Groundbreaking Contributions to Science and Medicine

    46 shares
    Share 18 Tweet 12
  • Neuropsychiatric Risks Linked to COVID-19 Revealed

    39 shares
    Share 16 Tweet 10
  • Study Reveals Beta-HPV Directly Causes Skin Cancer in Immunocompromised Individuals

    38 shares
    Share 15 Tweet 10

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unraveling EMT’s Role in Colorectal Cancer Spread

Gut γδ T17 Cells Drive Brain Inflammation via STING

Agent-Based Framework for Assessing Environmental Exposures

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.