• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Monday, September 25, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New gut microbe produces smelly toxic gas but protects against pathogens

Bioengineer by Bioengineer
September 18, 2023
in Health
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

An international team of scientists led by microbiologist Alexander Loy from the University of Vienna has discovered a new intestinal microbe that feeds exclusively on taurine and produces the foul-smelling gas hydrogen sulfide. The researchers have thus provided another building block in the understanding of those microbial processes that have fascinating effects on health. This is also true of Taurinivorans muris: the bacterium shows a protective function against Klebsiella and Salmonella, two important pathogens. The results are currently published in Nature Communications.

FISH: Fluorescence microscopy of Taurinivorans muris in pure culture

Credit: C: Huimin Ye

An international team of scientists led by microbiologist Alexander Loy from the University of Vienna has discovered a new intestinal microbe that feeds exclusively on taurine and produces the foul-smelling gas hydrogen sulfide. The researchers have thus provided another building block in the understanding of those microbial processes that have fascinating effects on health. This is also true of Taurinivorans muris: the bacterium shows a protective function against Klebsiella and Salmonella, two important pathogens. The results are currently published in Nature Communications.

What’s that smell?

The gut microbiome mediates our health in a myriad of ways. One of those ways is by contributing to the levels of hydrogen sulfide – the toxic gas responsible for foul smelling farts. Having small amounts of hydrogen sulfide in the gut is a good thing; in fact, it’s essential for a number of physiological processes, and can even protect against pathogens. Hydrogen sulfide-producing microbes in the gut may help “choke out” oxygen-dependent pathogens such as Klebsiella, making it harder for them to colonize.

However, excessive levels can have negative consequences and have been associated with gut inflammation and damage to the intestinal lining. Discovering the key players and processes that produce this noxious gas in our gut is a fundamental first step on the road to developing therapeutic interventions, for example, for inflammatory bowel disease.

Keeping young: the role of taurine

The bacterium Bilophila wadsworthia is one of the most important taurine utilizers in humans. In the current study, researchers led by Alexander Loy at CeMESS, the Centre for Microbiology and Environmental Systems Science of the University of Vienna, have discovered a new genus of hydrogen sulfide-producing bacteria in the mouse intestine. “The bacterium we described has a rather unbalanced diet,” explains Loy, “it specializes in consuming taurine.” Taurine is a semi-essential amino acid, which we synthesize in small amounts in our liver. However, we get most of our taurine from our diets – especially meat, dairy and seafood. 

Like hydrogen sulfide, taurine is implicated in a smorgasbord of physiological processes. Recent studies have found a link between taurine and healthy ageing – it seems this nutrient may stave away age-related disease. In light of these findings, the discovery of a new gut microbe that feeds exclusively on taurine (aptly named Taurinivorans muris) is another piece of an exciting puzzle. “By isolating the first taurine degrader in the mouse gut, we’re one step closer to understanding how these gut microbes mediate animal and human health” explains Huimin Ye, lead author of the study. 

To access sufficient taurine in the gut, however, Taurinivorans muris needs the help of other gut microbes to release it from bile acids. Taurine-containing bile acids are produced in the liver and are increasingly released into the intestine during a high-fat diet to help our body digest fats. The activities of the bacteria in the intestine in turn influence the bile acid metabolism in the liver. The results of the Viennese researchers therefore also contribute to a better understanding of these complex interactions in bile acid metabolism, which has an impact on processes and diseases throughout the body.

Taurine degrading microbes protect against pathogens

One of the most important functions of the symbiotic microbes in the gut is to defend against pathogens. The microbiome has a versatile arsenal of protective mechanisms – and utilizing taurine to create hydrogen sulfide is one of them. “Hydrogen sulfide may suppress the oxygen-dependent metabolism of some pathogens,” explains Ye. In the present study, the researchers found that Taurinivorans muris has a protective role against Klebsiella and Salmonella, two important gut pathogens. “The protective mechanism of Taurinivorans muris against pathogens may be via hydrogen sulfide but is essentially not yet fully understood” adds Alexander Loy. Taurine is one of the most important sources of hydrogen sulfide production in the gut. The study thus generates basic knowledge on the physiological interactions between the different gut microbes and their hosts, which is necessary to develop new microbiome-based therapies.

Links:

Research group of Alexander Loy
 
Division of Microbial Ecology, University of Vienna
 
Centre for Microbiology and Environmental Systems Science (CMESS), University of Vienna



Journal

Nature Communications

DOI

10.1038/s41467-023-41008-z

Article Title

Ecophysiology and interactions of a taurine-respiring bacterium in the mouse gut

Article Publication Date

18-Sep-2023

Share12Tweet8Share2ShareShareShare2

Related Posts

Study determined that women and men face some common, but also many different barriers, and barriers differ by global region

Global study provides new insights into barriers to effective cardiovascular rehabilitation for women and why women are less likely to participate

September 25, 2023
Eye Exam System

NIH awards researchers $1.2M to develop robotic eye examination system

September 22, 2023

Nanofluidic device generates power with saltwater

September 22, 2023

Clinical trial to test immune modulation strategy for hospitalized COVID-19 patients begins

September 22, 2023

POPULAR NEWS

  • blank

    Microbe Computers

    58 shares
    Share 23 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    34 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

ETRI unveiled hyper-realistic technologies for the metaverse world

Global study provides new insights into barriers to effective cardiovascular rehabilitation for women and why women are less likely to participate

Chromosome-scale genome sequence of Suaeda glauca sheds light on salt stress tolerance in halophytes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 57 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In