• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 22, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New global stocktake: Healthy forests could store much more carbon

Bioengineer by Bioengineer
November 16, 2023
in Chemistry
Reading Time: 3 mins read
0
Martin Herold
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Natural carbon reservoirs will play a major role at the COP28 world climate conference in the United Arab Emirates. After oceans and soils, forests are the largest “sinks” for carbon, i.e. they absorb an enormous amount of carbon dioxide from the atmosphere. Exactly how much this is and how much more it could be with better forest management is a difficult question. In a recent study in the scientific journal “Nature”, a team of more than two hundred researchers worldwide presents new estimates of the storage potential. The study was coordinated by ETH Zurich, important methodological contributions came from GFZ.

Martin Herold

Credit: Foto by GFZ

Natural carbon reservoirs will play a major role at the COP28 world climate conference in the United Arab Emirates. After oceans and soils, forests are the largest “sinks” for carbon, i.e. they absorb an enormous amount of carbon dioxide from the atmosphere. Exactly how much this is and how much more it could be with better forest management is a difficult question. In a recent study in the scientific journal “Nature”, a team of more than two hundred researchers worldwide presents new estimates of the storage potential. The study was coordinated by ETH Zurich, important methodological contributions came from GFZ.

According to the study, forests could ideally absorb 328 billion tons (gigatons, Gt for short) of carbon. However, as many formerly forested areas are now used for agriculture and as settlement areas, the potential is reduced to 226 Gt. 139 Gt of this (61%) could be achieved by protecting existing forests alone. The remaining 87 Gt (39%) could be realized by reconnecting previously fragmented forest landscapes and managing them sustainably.

Forests under pressure

Previous studies, which relied heavily on statistical evaluations and extrapolations, had arrived at results of a similar order of magnitude. As a comparison, the storage potential of 226 Gt is offset by annual emissions of just under 11 Gt of carbon (equivalent to 40 Gt of carbon dioxide).

However, instead of protecting forests and managing them sustainably, deforestation is continuing worldwide. Added to this is the almost unabated emission of greenhouse gases, which is accelerating global warming and thus putting forests under even more pressure.

Methodology

To arrive at their results, the researchers linked satellite data with surveys of forest condition and biomass taken from the ground. They also integrated data on carbon storage in forest soils with dead wood and litter. “The new paper is based on much better data and in this sense offers a better quantification of the potential than previous work,” says Martin Herold, one of the co-authors of the study and head of the GFZ Remote Sensing and Geoinformatics Section. He emphasizes how important it is to “systematically combine satellite and ground-based carbon measurements, which opens up new ways of understanding global carbon stocks and potentials”.

GFZ an important global partner for carbon stocktaking

The space-based biomass analysis originates mainly from GFZ, although GFZ has also contributed with soil data as part of a global network. Martin Herold: “The GFZ has invested heavily in such integrated surveys in the past and will continue to do so in the future. Our strong monitoring infrastructures make us an excellent and globally visible partner for such important global analyses on key issues such as how we can best evaluate and manage our carbon stocks in terms of climate and sustainability.”

Behind this are also strategic questions for the GFZ: How can we best monitor and quantify changes on our dynamic planet? How can we improve our understanding of georesources and use them sustainably?

Original study: Lidong Mo, Constantin M. Zohner et al.: Integrated global assessment of the natural forest carbon potential (Nature, 2023); https://doi.org/10.1038/s41586-023-06723-z

 

Scientific contact:

 

Prof. Dr. Martin Herold

Head of the Section Remote sensing and Geoinformatics

Phone: +49 331 6264-1190

Mail: [email protected]

 

Media Contact:

Josef Zens

Phone: 49 331 6264-1040

Mail: [email protected]

 

 

 



Journal

Nature

DOI

10.1038/s41586-023-06723-z

Method of Research

Observational study

Article Title

Integrated global assessment of the natural forest carbon potential

Article Publication Date

9-Nov-2023

COI Statement

No conflicts of interest declared.

Share12Tweet8Share2ShareShareShare2

Related Posts

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

New Study Warns Seasonal Freeze–Thaw Cycles Could Cause “Green” Biochar to Release Toxic Metals

September 20, 2025
blank

Gravitino Emerges as a Promising New Candidate for Dark Matter

September 19, 2025

Advancing Quantum Chemistry: Enhancing Accuracy in Key Simulation Methods

September 19, 2025

Neutrino Mixing in Colliding Neutron Stars Alters Merger Dynamics

September 19, 2025

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    156 shares
    Share 62 Tweet 39
  • Physicists Develop Visible Time Crystal for the First Time

    68 shares
    Share 27 Tweet 17
  • Tailored Gene-Editing Technology Emerges as a Promising Treatment for Fatal Pediatric Diseases

    50 shares
    Share 20 Tweet 13
  • Scientists Achieve Ambient-Temperature Light-Induced Heterolytic Hydrogen Dissociation

    48 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Efficient Deep-Blue CsPbBr3 LEDs Meet Rec.2020

Surface Engineering of SN38 Prodrug Nano-Assemblies: Contrasting Behaviors

New Strategies for Treating Capecitabine-Induced Hand-Foot Syndrome

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.