• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 19, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New glass-ceramic emits light when under mechanical stress

Bioengineer by Bioengineer
July 26, 2022
in Biology
Reading Time: 4 mins read
0
Mechanoluminescent glass-ceramic
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

WASHINGTON — Researchers have created a new glass-ceramic that emits light in response to mechanical stress, a property known as mechanoluminescence. With further development, the new material could be used to create a light source that is switched on by mechanical stress. This could be useful for monitoring stress in artificial joints in the body or providing warnings of dangerous stress or fractures in buildings, bridges and other structures.

Mechanoluminescent glass-ceramic

Credit: Lothar Wondraczek, Friedrich Schiller University Jena

WASHINGTON — Researchers have created a new glass-ceramic that emits light in response to mechanical stress, a property known as mechanoluminescence. With further development, the new material could be used to create a light source that is switched on by mechanical stress. This could be useful for monitoring stress in artificial joints in the body or providing warnings of dangerous stress or fractures in buildings, bridges and other structures.

“Most materials exhibiting mechanoluminescence have been made as powders, which aren’t very versatile,” said research team leader Lothar Wondraczek from Friedrich Schiller University Jena in Germany. “We designed a glass-ceramic material with mechanoluminescence, which allows glass-like processing approaches to be used to form virtually any shape — including fiber, beads or microspheres — that can be incorporated into various components and devices.”

The research is reported in a special issue of Optical Materials Express commemorating the United Nations International Year of Glass 2022, which celebrates the essential role that glass plays in society.

The new highly transparent glass-ceramic is made from chromium-doped zinc gallate (ZGO) crystals embedded in a potassium germanate glass matrix. These crystals give the material its mechanoluminescent properties but are so small that they don’t notably affect the visual transparency of the glass.

“Our work could help mechanoluminescent materials find widespread use in a variety of applications, including light-emitting product labels and security codes,” said Wondraczek. “It also ties in well with the International Year of Glass by demonstrating the wide versatility and unexpected properties of glassy materials.”

A more practical material

In addition to being difficult to form into various geometries, mechanoluminescent powders require extra processing steps such as encapsulation in a matrix material. To create a more practical material, the researchers turned to glass-ceramics.

Glass-ceramics are a relatively new type of material that consists of a crystalline material embedded into a glass matrix. The crystals can be used to give these materials very specific properties while the glass matrix allows them to be shaped with many of the same processes used for glass.

The researchers created the mechanoluminescent glass-ceramic by developing an exceptionally fast and stable crystallization process that allows the tiny ZGO crystals to precipitate homogeneously inside the glass after it has been shaped. They showed that the materials emitted light under mechanical stress by using the ball-drop test, a standard way of imparting a known impact force to a material. “We found that the mechanoluminescence response was reproducible and rechargeable and that it exhibited a direct correlation with the impact energy,” said Wondraczek.

Now that they have demonstrated the material’s light-emitting properties, they plan to adapt the glass composition so that it can be formed into sheet-like objects, optical fiber and microscale spherical beads and then explore how these could be used in components and devices. They also aim to exploit other features commonly attributed to glass-ceramics — such as thermal, chemical and mechanical stability — to gain new functions from the glassy materials.

Paper: J. Cao, Y. Ding, R. Sajzew, M. Sun, F. Langenhorst, L. Wondraczek, “Mechanoluminescence from highly transparent ZGO:Cr spinel glass ceramics,” Opt. Mater. Express Vol. 12, Issue 8, pp. 3238-3247 (2022).

https://doi.org/10.1364/OME.459185

About Optical Materials Express

Optical Materials Express is an open-access journal focusing on the synthesis, processing and characterization of materials for applications in optics and photonics. It is published by Optica Publishing Group and emphasizes advances in novel optical materials, their properties, modeling, synthesis and fabrication techniques; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The Editor-in-Chief is Andrea Alù from City University of New York, USA. For more information. For more information, visit Optical Materials Express.

About Optica Publishing Group (formerly OSA)

Optica Publishing Group is a division of Optica (formerly OSA), Advancing Optics and Photonics Worldwide. It publishes the largest collection of peer-reviewed content in optics and photonics, including 18 prestigious journals, the society’s flagship member magazine, and papers from more than 835 conferences, including 6,500+ associated videos. With over 400,000 journal articles, conference papers and videos to search, discover and access, Optica Publishing Group represents the full range of research in the field from around the globe.



Journal

Optical Materials Express

DOI

10.1364/OME.459185

Article Title

Mechanoluminescence from highly transparent ZGO:Cr spinel glass ceramics

Article Publication Date

26-Jul-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Continuous Electrocardiogram-Based Sex Index Unveiled

October 19, 2025
Early Gonadectomy Impacts Lifelong Frailty in Dogs

Early Gonadectomy Impacts Lifelong Frailty in Dogs

October 19, 2025

Sex Differences in Energy Demand in Alzheimer’s Model

October 19, 2025

Sex Differences in Anxiety and Depression Modulation

October 19, 2025

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1263 shares
    Share 504 Tweet 315
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    295 shares
    Share 118 Tweet 74
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    126 shares
    Share 50 Tweet 32
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    103 shares
    Share 41 Tweet 26

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Innovative Surgical Transfer Sheet: A Randomized Trial

Exploring Inflammatory Pathways in Hypertensive Nephrosclerosis Progression

Impact of PEG 6000 on Okra Seed Germination

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 65 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.