• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, February 8, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New genetic research by UMass Amherst advances understanding of internal mechanisms of biological clocks

Bioengineer by Bioengineer
October 20, 2022
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

University of Massachusetts Amherst research into genetic mutations that affect circadian rhythms offers new insight into the rest-wake cycle and provides a new model for investigating human disease and ultimately developing medical treatments.

Neuroscientist Focuses on Circadian Rhythms

Credit: UMass Amherst

University of Massachusetts Amherst research into genetic mutations that affect circadian rhythms offers new insight into the rest-wake cycle and provides a new model for investigating human disease and ultimately developing medical treatments.

Disruptions to the body’s internal clock – which coordinates the timing of biochemical, physiological and behavioral processes – are associated with a range of diseases, including cancer, cardiovascular conditions and susceptibility to infections, as well as a higher risk for accidents. Common disruptions of circadian rhythms are jet lag and shift work, which is performed by some 30 million people in the U.S.

“We are studying two mutations, both of which affect our ability to respond to shifts of the light cycle,” says neurobiologist Eric Bittman, Professor Emeritus of Biology. “Both of them speed up the clock. They reveal how vulnerable we are to disruptions in the light:dark schedule.”

In mammals, circadian rhythms are generated internally by a master pacemaker in the suprachiasmatic nucleus of the hypothalamus in the brain. In addition, every cell in the body has its own circadian clock, which the master pacemaker coordinates. In the normal, light:dark and fluctuating environment, circadian clocks create 24-hour cycles. However, in constant conditions, such as when hamsters are studied in darkness, the rhythms generate cycles whose period is longer or shorter than 24 hours. 

“What this reveals to us is that there’s some internal mechanism that is generating rhythmicity, and that the animals are using cues from the environment, the most powerful of which is the light:dark cycle, to sync it up to exactly 24 hours,” Bittman says. 

In previous research, Bittman and team identified a recessive mutation, which they call duper, as a defect in the circadian regulator gene Cryptochrome 1 (CRY1) of Syrian hamsters. By improving the draft of the hamster genome using fast homozygosity mapping, they created a modern genetic research model for investigating human diseases.

In a follow-up paper published recently in the Proceedings of the National Academy of Sciences (PNAS), the research team focuses on the effects of duper in genetically altered hamsters. The scientists identify previously unsuspected functions of CRY1 in circadian entrainment, which is the synching of the biological clock with external signals, and heart disease. 

“Duper speeds up the clock in constant conditions and it makes it be able to shift by as much as 180 degrees in response to even a brief pulse of light,” Bittman explains. “We suspect this might be relevant in understanding the effects of jet lag and shift work.”

The body’s organs reset their clocks at different rates after circadian disruption. This temporal misalignment is believed to cause the adverse health effects associated with shift work. “Almost all of our physiological processes are rhythmic,” Bittman says. 

The researchers found that circadian re-entrainment is accelerated in duper mutant hamsters, independent of the speeding up of the clock. In an effort to understand more about the health consequences of circadian misalignment, the researchers examined effects of duper and phase shifts on a hamster model of heart disease known to be aggravated by phase shifts. 

Simulated jet lag, in the form of eight-hour phase shifts every second week, shortened the lifespan of cardiomyopathic hamsters. However, the shortened lifespan was reversed in duper hamsters as the mutation accelerated their adjustment to the shift of the light:dark cycles. Bittman says the findings have implications for pinpointing the pathways involved in human biological clocks.

“For people with jet lag or the millions of shift workers, it can take days and sometimes weeks for the body – the different organs – to come back into their normal temporal relationship,” he says. Many of us disrupt our circadian system when we are exposed to light late in the evening, such as by looking at cell phones and computer screens. “It can take a couple of weeks until your brain is having the right relationship to your liver and kidneys,” Bittman adds. 

The research suggests that we all need to be mindful of how the environment affects our biological clocks. Specifically, hospitals need to be sensitive to the timing of lights and darkness in patients’ rooms. “We need to pay attention to the temporal relationship between organs and between the master clock and the brain, and how it regulates the clock in the brain, as well as in the peripheral organs, and be sensitive to the light:dark environment,” Bittman says.

Additionally, understanding the rhythms of the organs is a crucial aspect in the timing of medical treatment. “An awful lot of drugs that are administered are more effective at one time of the day than another because the circadian clock is regulating all these metabolic pathways that in fact are being targeted by these drugs,” Bittman says.

Ongoing research will focus on identifying the underlying mechanisms of the biological clocks and their role in disease.



Journal

Proceedings of the National Academy of Sciences

DOI

10.1073/pnas.2121883119

Method of Research

Observational study

Subject of Research

Animals

Article Title

The duper mutation reveals previously unsuspected functions of Cryptochrome 1 in circadian entrainment and heart disease

Article Publication Date

5-Aug-2022

COI Statement

None

Share12Tweet8Share2ShareShareShare2

Related Posts

Flight Bones

Scientists develop new index based on functional morphology to understand how ancestors of modern birds used their wings

February 8, 2023
Microtiter plates used in the study

Novel method to design new peptide therapeutics pioneered

February 8, 2023

USC Stem Cell-led studies point the way to broadly effective treatments for ALS

February 7, 2023

Forest management will have a stronger effect than climate change on the supply of ecosystem services

February 7, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    66 shares
    Share 26 Tweet 17
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9
  • Duke-NUS and NHCS scientists first in the world to regenerate diseased kidney

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Size of X-Ray beams successfully evaluated with mathematics

Scientists develop new index based on functional morphology to understand how ancestors of modern birds used their wings

Immunaeon joins the RegenMed Hub

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 43 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In