• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 25, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New genetic markers of type 2 diabetes identified in East Asians

Bioengineer by Bioengineer
May 6, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

First-in-kind study co-authored by UMass Amherst epidemiologist advances knowledge of diabetes’ biological roots

IMAGE

Credit: UMass Amherst

In the largest study of its kind in any non-European population, an international team of researchers, including a University of Massachusetts Amherst genetic epidemiologist, has identified new genetic links with type 2 diabetes among 433,540 East Asian individuals.

The findings, published in Nature, “provide additional insight into the biological basis of type 2 diabetes,” says co-lead author and statistician Cassandra Spracklen, assistant professor of biostatistics and epidemiology in the UMass Amherst School of Public Health and Health Sciences.

Spracklen served as a post-doctoral fellow at the University of North Carolina (UNC) at Chapel Hill during the research. “How diabetes comes about in different populations can occasionally vary in subtle but significant ways,” she says. “With studies like these, we are able to come at that question a little better.”

Ultimately, the goal is to identify potential genetic targets to treat or even cure the chronic metabolic disorder that affects and sometimes debilitates more than 400 million adults worldwide, according to the International Diabetes Federation.

The international team of more than 100 researchers was led by scientists at five institutions in Singapore, the U.S., South Korea, United Kingdom and Japan. The research was funded by more than 30 governmental sources and foundations.

“Such a large-scale study would never have been possible without the commitment and dedication to collaboration among so many scientists around the world, especially in Asia,” says Karen Mohlke, professor of genetics at the University of North Carolina at Chapel Hill School of Medicine and one of the study’s senior authors. “The data this team collected and analyzed has provided the research community with much-needed new information about the biological underpinnings of diabetes.”

The other senior authors are Xueling Sim of the National University of Singapore; Dr. Bong-Jo Kim of the National Institute of Health in Cheongjusi, South Korea; Robin Walters of the University of Oxford, United Kingdom; and Dr. Takashi Kadowaki of the University of Tokyo, Japan.

The new research – which analyzed data from 433,540 East Asians, including 77,418 with type 2 diabetes – emerges from the consortia known as AGEN (Asian Genetic Epidemiology Network) and DIAMANTE (DIabetes Meta-ANalysis of Trans-Ethnic association studies). Such large-scale genome-wide association studies in diverse populations have the potential to uncover the genes, biology and pathways related to diseases.

DIAMANTE includes five ancestry arms – African, East Asian, European, Hispanic/Latino and South Asian. The analysis of genetic variants in some 900,000 individuals of European ancestry was published in 2018 in Nature Genetics.

In the new analysis of East Asian individuals, researchers used genome-wide association data from 23 cohort studies to examine type 2 diabetes risk in East Asian individuals, identifying 301 distinct association signals at 183 loci, or specific positions on a chromosome. Sixty-one of the loci were newly implicated in the predisposition for type 2 diabetes.

These findings expand the number of genetic variances associated with diabetes and highlight the importance of studying different ancestries. “For many years, these studies have been done primarily in white European populations,” Spracklen explains. “There are DNA variants that are seen in some populations and not in others. Learning about the additional variants can help identify additional genes that influence a person’s risk for developing type 2 diabetes.”

That could help explain, for example, why among people of similar body mass index (BMI) or waist circumference, the prevalence of type 2 diabetes is greater in East Asian populations than in European populations.

The next steps are to combine discovery across populations and to experimentally determine which genes are altered by the genetic variants and how those alterations lead to disease.

###

Media Contact
Patty Shillington
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41586-020-2263-3

Tags: BiochemistryBiologyDiabetesEndocrinologyGeneticsMedicine/HealthMetabolism/Metabolic DiseasesPublic HealthTechnology/Engineering/Computer Science
Share13Tweet8Share2ShareShareShare2

Related Posts

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

Cutting Electrolyte Reduction Boosts High-Energy Battery Performance

December 19, 2025
Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

Microenvironment Shapes Gold-Catalysed CO2 Electroreduction

December 11, 2025

Photoswitchable Olefins Enable Controlled Polymerization

December 11, 2025

Cation Hydration Entropy Controls Chloride Ion Diffusion

December 10, 2025
Please login to join discussion

POPULAR NEWS

  • Nurses’ Views on Online Learning: Effects on Performance

    Nurses’ Views on Online Learning: Effects on Performance

    70 shares
    Share 28 Tweet 18
  • NSF funds machine-learning research at UNO and UNL to study energy requirements of walking in older adults

    71 shares
    Share 28 Tweet 18
  • Unraveling Levofloxacin’s Impact on Brain Function

    54 shares
    Share 22 Tweet 14
  • Exploring Audiology Accessibility in Johannesburg, South Africa

    51 shares
    Share 20 Tweet 13

About

BIOENGINEER.ORG

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

MEI1 Variants Linked to Female Infertility and Embryo Issues

Exploring Acute Care Nurses’ Shift Handoff Experiences

Impact of Mental and Somatic Disorders on Hip Surgery Reoperations

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 70 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.