• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Sunday, October 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New function for plant enzyme could lead to green chemistry

Bioengineer by Bioengineer
December 9, 2019
in Chemistry
Reading Time: 4 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Discovery may inspire development of better industrial catalysts

IMAGE

Credit: Brookhaven National Laboratory


UPTON, NY–Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have discovered a new function in a plant enzyme that could have implications for the design of new chemical catalysts. The enzyme catalyzes, or initiates, one of the cornerstone chemical reactions needed to synthesize a wide array of organic molecules, including those found in lubricants, cosmetics, and those used as raw materials for making plastics.

“This enzyme could inspire a new form of ‘green’ chemistry,” said Brookhaven Lab biochemist John Shanklin, who led the research. “Maybe we can adapt this biomolecule to make useful chemicals in plants, or use it as the basis for designing new bio-inspired catalysts to replace more expensive, toxic catalysts currently in use.”

Shanklin and his team published a paper describing the research in the journal Plant Physiology.

The team made the discovery in the course of their ongoing research into enzymes that desaturate plant oils. These desaturase enzymes strip hydrogen atoms off specific adjacent carbon atoms in a hydrocarbon chain and insert a double bond between those carbon atoms. Shanklin’s group had previously created a triple mutant version of a desaturase enzyme with interesting properties, and they were studying the three mutations separately to see what each one did.

Two of the single mutant enzymes turned out to remove the double bond between adjacent carbon atoms and added an “OH” (hydroxyl group) to each carbon to produce a fatty acid with two adjacent hydroxyl groups.

Fatty acids containing such adjacent OH groups, known as diols, are important chemical components for making lubricants, like those that keep hot engines running smoothly. They can also be converted to building blocks for making plastics or other commodity products.

“Diols are really important industrial chemicals but making them artificially in the lab is quite problematic,” Shanklin said.

The best industrial catalysts for this reaction are expensive, highly volatile, and toxic, he noted.

Another problem is that there are distinct forms of diols, and it’s hard for chemists to make a single pure form.

“The enzyme mutants we discovered naturally make a single form, so it’s ready to use without further processing or waste,” Shanklin said.

Tracing the origins of the oxygen atoms in the two OH groups revealed that both came from the same oxygen molecule (O?). The ability to transfer both oxygen atoms from a single O? molecule during a reaction, known as “dioxygenase” chemistry, was something of a surprise for a “diiron” enzyme (one with two iron atoms in its active site).

“Dioxygenase chemistry has not previously been reported for diiron enzymes,” Shanklin said. “We had to perform some technically challenging experiments to provide incontrovertible proof that this was indeed happening, and without Ed Whittle’s creativity and tenacity, we wouldn’t have completed this study.”

Whittle, the lead author on the paper (now retired from Brookhaven Lab), has diligently worked on this project over a period of years in Shanklin’s lab to nail down this important new discovery.

The team’s next goal is to obtain a crystal structure of this enzyme using x-rays at the National Synchrotron Light Source II (NSLS-II)–a DOE Office of Science user facility at Brookhaven Lab.

“We’ll share that structural information with our computational chemistry colleagues to figure out the details of how this unprecedented chemistry can occur with this class of catalyst.”

That work could help the team learn how to control the configuration of lab-made catalysts to mimic the plant-derived version.

“If we can incorporate what we’ve learned into the design of industrial catalysts, those reactions could produce purer products with less waste and avoid using toxic chemicals,” Shanklin said.

###

This work was funded by the DOE Office of Science.

Brookhaven National Laboratory is supported by the U.S. Department of Energy’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://www.energy.gov/science/

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Follow @BrookhavenLab on Twitter or find us on Facebook

Related Links

An online version of this news release with photo

Scientific paper: “Castor Stearoyl-ACP Desaturase Can Synthesize a Vicinal Diol by Dioxygenase Chemistry”

Media contacts

Karen McNulty Walsh, (631) 344-8350, or Peter Genzer, (631) 344-3174

Media Contact
Karen McNulty Walsh
[email protected]
631-344-8350

Original Source

https://www.bnl.gov/newsroom/news.php?a=116936

Related Journal Article

http://dx.doi.org/10.1104/pp.19.01111

Tags: BiochemistryBiologyBiomedical/Environmental/Chemical EngineeringIndustrial Engineering/ChemistryPlant Sciences
Share12Tweet8Share2ShareShareShare2

Related Posts

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

Innovative Chemobiological Platform Converts Renewable Sugars into Key Aromatic Hydrocarbons Found in Petroleum

October 12, 2025
Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

Harnessing Microwaves to Boost Energy Efficiency in Chemical Reactions

October 10, 2025

Wirth Named Fellow of the American Physical Society

October 10, 2025

UTA Physicist Secures $1.3 Million Grant to Advance Neutrino Research

October 10, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1223 shares
    Share 488 Tweet 305
  • New Study Reveals the Science Behind Exercise and Weight Loss

    103 shares
    Share 41 Tweet 26
  • New Study Indicates Children’s Risk of Long COVID Could Double Following a Second Infection – The Lancet Infectious Diseases

    100 shares
    Share 40 Tweet 25
  • Revolutionizing Optimization: Deep Learning for Complex Systems

    89 shares
    Share 36 Tweet 22

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Aptamer-Enhanced Monocytes Reduce Tau and Neuroinflammation

Energy Shortages Hinder DPRK Agriculture’s Drought Resilience

Topological Influence on Mechanical Properties of 3D Printed Porous Structures

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 64 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.