• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 9, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New front opened in fight against common cancer driver

Bioengineer by Bioengineer
February 20, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Walter and Eliza Hall Institute, Australia


Walter and Eliza Hall Institute researchers have revealed a new vulnerability in lymphomas that are driven by one of the most common cancer-causing changes in cells.

The team revealed that the protein MNT is required for the survival of lymphoma cells that are driven by the protein MYC. Up to 70 per cent of human cancers – including many blood cancers – have high levels of MYC, a protein which forces cells into abnormally rapid growth.

The research, led by Professor Suzanne Cory, Dr Hai Vu Nguyen and Dr Cassandra Vandenberg, suggests that potential therapies targeting MNT could be effective new treatments for MYC-driven cancers.

At a glance

  • The majority of human cancers are driven by high levels of the protein MYC, but it has been challenging to develop new medicines that directly inhibit MYC.
  • Our researchers revealed that MYC-driven lymphoma cells rely on the protein MNT for their survival, and without MNT the cells rapidly die.
  • The results suggest that inhibiting MNT might be an effective new approach for treating MYC-driven cancers.

A new target

High levels of the MYC protein are found in up to 70 per cent of human cancers. MYC controls hundreds of genes, driving rapid cell production, said Professor Cory, who has studied MYC-driven cancers since the early 1980s.

“For many years we hoped for a drug that could directly target MYC as a potential cancer treatment, but to date such inhibitors have been disappointing in the clinic,” she said. “It became clear we needed to look for other vulnerabilities in MYC-driven cancers.”

The team successfully identified a new target for tackling MYC-driven cancers by homing in on the role of a protein related to MYC, called MNT. Their research was published in the journal Blood.

By deleting the gene encoding MNT from MYC-driven lymphocytes – the type of immune cell from which lymphomas arise – the team found that MNT played a significant role in MYC-driven lymphoma development, Dr Vandenberg said.

“In our laboratory models, the incidence of MYC-driven lymphomas was greatly reduced when MNT was absent. This showed us that MNT had a vital role at some stage during lymphoma development,” she said.

“That role became clear when we found that pre-cancerous cells lacking MNT had high levels of apoptotic cell death,” said Dr Nguyen. “Thus, MNT is required to keep MYC-driven cells alive.”

Towards better treatments

Dr Nguyen said that the team went on to examine the impact of depleting MNT from fully malignant MYC-driven lymphomas. “When we did this, we saw that the tumour cells rapidly died,” he said. “This suggests MNT could well be a promising new therapeutic target for MYC-driven lymphomas.”

Professor Cory said the researchers would now look at whether MNT was important in other MYC-driven cancers.

“Inhibiting MNT may also make tumours more susceptible to other drugs such a BH3-mimetics which directly target the cell’s death machinery.

“Although a lot of work remains to be done to develop and test a new MNT-inhibiting therapy, our discovery opens up a new front in tackling MYC-driven cancers,” Professor Cory said.

###

The research was supported by the Australian National Health and Medical Research Council, the US-based Leukemia and Lymphoma Society, philanthropic support to the Walter and Eliza Hall Institute and the Victoria Government.

Media Contact
Vanessa Solomon
[email protected]
61-431-766-715

Original Source

https://www.wehi.edu.au/news/new-front-opened-fight-against-common-cancer-driver

Related Journal Article

http://dx.doi.org/10.1182/blood.2019003014

Tags: cancerMedicine/Health
Share12Tweet8Share2ShareShareShare2

Related Posts

York University Study Finds Combined Alcohol and Cannabis Use Increases Risks for Young Adults

September 9, 2025

Thirteen U.S. Journalists Awarded Fellowships for Aging-Focused Science Reporting

September 9, 2025

ChatGPT in Nursing: Benefits and Challenges Explored

September 9, 2025

UT San Antonio Health Science Center Ranks in Top 2% Worldwide for Research Output

September 9, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    151 shares
    Share 60 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • First Confirmed Human Mpox Clade Ib Case China

    56 shares
    Share 22 Tweet 14
  • Physicists Develop Visible Time Crystal for the First Time

    50 shares
    Share 20 Tweet 13

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nitrogen Supplementation: Impact on Cattle Nutrition and Metabolism

York University Study Finds Combined Alcohol and Cannabis Use Increases Risks for Young Adults

Thriving Amidst Venus’s Hostile Environment: Discovering Rare Earths and Essential Metals

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.