• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Wednesday, October 4, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News

New form of autism found

Bioengineer by Bioengineer
December 1, 2016
in Science News
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Autism spectrum disorders affect around one percent of the world's population and are characterized by a range of difficulties in social interaction and communication. In a new study published in Cell today, a team of researchers led by Gaia Novarino, Professor at IST Austria, has identified a new genetic cause of ASD. Gaia Novarino explains why this finding is significant: "There are many different genetic mutations causing autism, and they are all very rare. This heterogeneity makes it difficult to develop effective treatments. Our analysis not only revealed a new autism-linked gene, but also identified the mechanism by which its mutation causes autism. Excitingly, mutations in other genes share the same autism-causing mechanism, indicating that we may have underscored a subgroup of ASDs."

"The identification of novel genes, especially in heterogeneous diseases such as autism, is difficult. However, as result of a collaborative effort, we were able to identify mutations in a gene called SLC7A5 in several patients born to consanguineous marriages and diagnosed with syndromic autism", points out Dr. Caglayan, Chairman of the Department of Medical Genetics in the School of Medicine at Istanbul Bilim University in Turkey and co-author of the study.

SLC7A5 transports a certain type of amino acids, the so-called branched-chain amino acids (BCAA), into the brain. To understand how mutations of SLC7A5 lead to autism, the researchers studied mice in which SLC7A5 is removed at the barrier between the blood and the brain. This reduces the levels of BCAAs in their brain, and interferes with protein synthesis in neurons. Consequently, the mice show reduced social interaction and other changes in their behavior, which are also observed in other autism mouse models. In a previous study, Gaia Novarino and colleagues identified a mutation in a gene that is involved in the breakdown of these same amino acids in several patients with ASD, intellectual disability and epilepsy. "Of course, not all genes causing autism affect amino acid levels, and these forms of autism are unarguably very rare, but it is possible that even more autism-causing genes fall in this group." explains Gaia Novarino.

Notably, the researchers were able to treat some of the neurological abnormalities in the adult mice missing SLC7A5 at the blood-brain barrier. After delivering BCAAs straight into the mice's brains for three weeks, the authors observed an improvement in behavioral symptoms. Dora Tarlungeanu, PhD student in Gaia Novarino's group and first author of the study, is excited about the outlook this result gives: "Our research found a potential treatment for certain symptoms presented in this form of ASD in mice but translation into a treatment for ASD patients will require many years of additional research." The researchers' results contrast with the idea that ASDs are always irreversible conditions. The way they treated symptoms in the mice can, of course, not directly be used in humans. But they show that some of the neurological complications presented by mice missing Slc7a5 can be rescued, and so it is possible that – eventually – patients may be treated as well.

###

Media Contact

Elisabeth Guggenberger
[email protected]
43-224-390-001-199
@istaustria

http://Www.ist.ac.at

############

Story Source: Materials provided by Scienmag

Share12Tweet7Share2ShareShareShare1

Related Posts

2023 Pardes Humanitarian Prize Recipient

Brain & Behavior Research Foundation names Special Olympics International Recipient of 2023 Pardes Humanitarian Prize in Mental Health and awards Honorary Pardes Prize to Henry Jarecki, M.D

October 4, 2023
Fano variety

Machine learning used to probe the building blocks of shapes

October 4, 2023

LSU Health New Orleans’ Porche awarded top honor by National League for Nursing

October 4, 2023

Translational Plant Sciences Center sows seeds for new research

October 4, 2023
Please login to join discussion

POPULAR NEWS

  • blank

    Microbe Computers

    59 shares
    Share 24 Tweet 15
  • A pioneering study from Politecnico di Milano sheds light on one of the still poorly understood aspects of cancer

    35 shares
    Share 14 Tweet 9
  • Fossil spines reveal deep sea’s past

    34 shares
    Share 14 Tweet 9
  • Scientists go ‘back to the future,’ create flies with ancient genes to study evolution

    75 shares
    Share 30 Tweet 19

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Brain & Behavior Research Foundation names Special Olympics International Recipient of 2023 Pardes Humanitarian Prize in Mental Health and awards Honorary Pardes Prize to Henry Jarecki, M.D

Machine learning used to probe the building blocks of shapes

LSU Health New Orleans’ Porche awarded top honor by National League for Nursing

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 56 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In