• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, September 1, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New forest treatment helps trees adapt better to climatic change

Bioengineer by Bioengineer
June 26, 2019
in Biology
Reading Time: 4 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: University of Granada

Researchers from the University of Granada, the Andalusian Institute of Agricultural Research and Training, Fishing, Food and Organic Production (IFAPA), and the Pyrenean Institute of Ecology of the Spanish National Research Council (CSIC) have verified that the thinning technique is effective as an alternative approach in the recovery and maintenance of forest ecosystems dealing with extreme climates. The thinning method consists of reducing the number of trees in a given area, so that those remaining are able to access more resources.

The researchers validated this technique using a novel method based on taking high-resolution measurements in the variations of the diameters of tree trunks. The method contributes to a better understanding of the short-term relationships between climatic changes and tree stem growth. To date, the technique commonly used has been to measure the width of the trunk’s rings, but this is ineffective for discerning growth over a short time scale.

Forest thinning consists of reducing the density of trees per hectare, to thus decrease the competition for available resources and improve the growth of the remaining trees, rendering them less vulnerable to water stress. The researchers have set out this technique in a recent paper entitled “Using stem diameter variations to detect and quantify growth and relationships with climatic variables on a gradient of thinned Aleppo pines” published in the journal Forest Ecology and Management. They position it as a viable alternative in the fight against climate change in certain Mediterranean areas, demonstrating that the growth of forests improves when there is less competition between individual trees.

These experts analysed the evolution of the trees over time. IFAPA researcher Francisco Bruno Navarro Reyes, co-author of the article, explains: “We have monitored the daily contractions and dilations of the trunks over the course of three years, to assess whether this technique triggers earlier growth in Spring and lengthens the period through to the autumn, effectively prolonging the period during which the trees develop.”

Fewer pine trees, improved growth

The land where the experiment and observations were conducted–Cortijo del Conejo, Cortijo Albarrán and Cortijo Becerra, in Guadix, Province of Granada–belongs to the Ministry of Agriculture, Livestock, Fisheries and Sustainable Development, and was recently declared a critical area for research on management of the natural environment in south-eastern Spain. At these sites, records have been kept for over 20 years on the climatic variables of the area. By examining factors such as humidity and air temperature, radiation, or vapour-pressure deficit, the researchers determined how the management of such areas can affect the direct response between trees and climate.

The scope of the study covered 16 plots measuring 20m x 20m planted in 1995 with Pinus halepensis (Aleppo pine), to a density of about 1,500 per hectare, this species being among the most commonly found in the Mediterranean area. Ten years after the pines were planted, the researchers commenced the thinning process, controlling the relative degree of thinning in each plot and reducing the original density to 800, 400, and 250 trees per hectare, respectively.

The measurements were made using digital dendrometers, which very accurately record variations in trunk dimensions and provide precise information about secondary tree growth in relation to climatic variables and water stress. Using this technology, the experts successfully established the effects of these variables on the cumulative growth of the pines (measured daily, monthly, annually and in total) more accurately than with other methods used in the past, such as band dendrometers or tree ring analysis.

In addition, by means of mathematical and statistical analyses, the researchers were able to identify how individual tree-environment relationships operate, reflecting their adaptation to the change in density. In those treatments with lower a concentration of trees, the pines grew much better. Hence, the study has confirmed that, when competition for resources is reduced, development and growth are longer and more effective.

After five years of thinning, the dendrometers were installed in each plot to monitor secondary tree growth–the daily variation of the trunks, the accumulated growth, and the maximum daily contraction, as well as the number of days of actual development during a three-year period. This information, together with the correlation of climatic variables, revealed that trees in the plots subjected to the greatest thinning showed less vulnerability to drought, greater recovery capacity after drought, and improved climatic sensitivity. They also presented greater efficiency in the use of resources and, therefore, better adaptation to the environment and greater resilience to change.

The various stages of the research were funded by Spain’s National Institute for Agricultural and Food Research and Technology (INIA), European Union Feder funding, and the Andalusian Environment and Water Agency, within the project “Áreas pasto-cortafuegos como herramienta de selvicultura preventiva de incendios en las tierras forestales mediterráneas”.

###

Media Contact
María Noelia Jiménez Morales
[email protected]

Original Source

https://canal.ugr.es/noticia/forest-thinning-more-effectively-climatic-change/

Related Journal Article

http://dx.doi.org/10.1016/j.foreco.2019.03.061

Tags: Climate ChangeEarth ScienceForestryPlant Sciences
Share12Tweet7Share2ShareShareShare1

Related Posts

Unraveling Odorant Proteins in Kissing Bugs

September 1, 2025

Drumming in Mongolian Gerbils: Context or Arousal?

September 1, 2025

Seasonal Brain Shrinkage in Shrews Caused by Water Loss, Not Cell Death

September 1, 2025

Lower IGF1 Levels in Preeclampsia Affect Trophoblasts

September 1, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    153 shares
    Share 61 Tweet 38
  • Molecules in Focus: Capturing the Timeless Dance of Particles

    143 shares
    Share 57 Tweet 36
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    117 shares
    Share 47 Tweet 29
  • Do people and monkeys see colors the same way?

    112 shares
    Share 45 Tweet 28

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Tailored Risk Messages Show No Impact on Increasing Colorectal Cancer Screening Rates

New Predictive Model for Postpartum Hemorrhage in Cesarean Cases

Novel ADC Targets Fucosyl-GM1 in Lung Cancer

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.