• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Monday, January 12, 2026
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New family of glass good for lenses

Bioengineer by Bioengineer
April 3, 2019
in Chemistry
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Credit: Penn State EMS

A new composition of germanosilicate glass created by adding zinc oxide has properties good for lens applications, according to Penn State researchers. This marks the discovery of a novel glass family.

The researchers invented a new family of zinc germanosilicate glass that has a high refractive index comparable to that of pure germania glass. The samples also showed high transparency, good ultra-violet-shielding properties, and good glass forming ability, making them suitable for lens applications. They published their results in a recent issue of the Journal of Non-Crystalline Solids.

Germanosilicate glass is essential in the manufacture of optical amplifiers, waveguides, and solid-state lasers.
“The motivation for the study was the need for new glass compositions that have a high refractive index while still being processable at an industrial scale,” said John Mauro, professor of materials science and engineering.

A glass’ refractive index determines its use.

“The benefit of a high refractive index is its capacity for designing low-thickness lenses,” said Ye Luo, doctoral student in materials science and engineering.
In glass synthesis, however, achieving a high refractive index typically has a few roadblocks. Lead oxide can accomplish this, but it requires the use of toxic raw materials. Non-lead constituents that encourage a high refractive index can make the glass much more difficult to form, or prone to crystallization and therefore more opaque. By finding the optimum balance of zinc oxide with the other components of the glass composition, the researchers avoided these issues.

Zinc oxide showed UV shielding properties in the study samples. This should not be surprising, Mauro said, given that inorganic sunscreen is based on zinc oxide. With UV shielding, a zinc-oxide-containing glass could be used for everyday applications such as car windows or eyeglasses.

The glass samples also showed favorable forming properties. As a “long glass,” the new compositions can be formed over a broader temperature range, making them much simpler to manipulate during formation. This property, the resistance to crystallization, and the lower cost of zinc oxide compared to germania all make this new glass composition a practical choice for manufacturing on a mass scale, the researchers said.

###

The researchers have filed a patent for the zinc oxide-containing germanosilicate glass.

Research was funded by Penn State. Conghang Qu and Arshiya Bhadu, both undergraduate students in materials science and engineering at Penn State, also contributed to this work.

Media Contact
A’ndrea Elyse Messer
[email protected]

Related Journal Article

http://dx.doi.org/10.1016/j.jnoncrysol.2018.10.012

Tags: Chemistry/Physics/Materials SciencesMaterials
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Advancing Alkene Chemistry: Homologative Difunctionalization Breakthrough

January 8, 2026
Biocompatible Ligand Enables Safe In-Cell Protein Arylation

Biocompatible Ligand Enables Safe In-Cell Protein Arylation

January 8, 2026

Monovalent Pseudo-Natural Products Boost IDO1 Degradation

January 7, 2026

Catalytic Enantioselective [1,2]-Wittig Rearrangement Breakthrough

January 7, 2026
Please login to join discussion

POPULAR NEWS

  • Enhancing Spiritual Care Education in Nursing Programs

    154 shares
    Share 62 Tweet 39
  • PTSD, Depression, Anxiety in Childhood Cancer Survivors, Parents

    146 shares
    Share 58 Tweet 37
  • Robotic Ureteral Reconstruction: A Novel Approach

    69 shares
    Share 28 Tweet 17
  • Impact of Vegan Diet and Resistance Exercise on Muscle Volume

    47 shares
    Share 19 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Unveiling Complex Chromosomal Insertions with Karyotyping

Enhanced Coherent Ranging via Phase-Multiplied Interferometry

Adaphostin Triggers Oxidative Stress in Esophageal Cancer

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 71 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.