• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Wednesday, November 5, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New extreme ultraviolet facility opens for use

Bioengineer by Bioengineer
September 28, 2020
in Chemistry
Reading Time: 5 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

A new machine to probe the ultrafast motion of matter is the first of its kind

IMAGE

Credit: © 2020 Springer Nature

Researchers have established a novel high-frequency laser facility at the University of Tokyo. The coherent extreme ultraviolet light source can reveal details of biological or physical samples with unprecedented clarity. It also allows for investigation of time-dependent phenomena such as ultrafast chemical reactions. Existing facilities for such investigations necessarily require enormous particle accelerators and are prohibitive to many researchers. This new facility should greatly improve access for a broad range of researchers.

You are probably familiar with ultraviolet (UV) light and X-rays. UV light from the sun helps your body produce vitamin D and makes solar panels generate power, and X-rays can be used to image the inside of your body to find broken bones or other ailments. But beyond these aspects, UV light and X-rays are also essential tools for the investigation of the physical world. Researchers use these forms of light to reveal details of biological, chemical and physical samples such as their makeup, structure and behavior.

Two kinds of light which are especially useful for state-of-the-art investigations into fast-acting phenomena, such as certain chemical reactions or biological processes, are coherent extreme ultraviolet (XUV) and soft X-ray pulses. These are both very precise forms of light with finely controlled parameters, akin to laser pulses, crucial for performing good rigorous experiments. However there are some drawbacks to how these beams are made.

“Facilities to produce coherent XUV and soft X-rays are huge machines based on particle accelerators — like smaller versions of the Large Hadron Collider in Europe,” said Professor Katsumi Midorikawa from the UTokyo Institute for Photon Science and Technology and RIKEN Center for Advanced Photonics. “Given the rarity of these facilities and the expense of running experiments there, it presents a barrier to many who might wish to use them. This is what prompted myself and colleagues at UTokyo and RIKEN to create a new kind of facility that we hope will be far more accessible for a greater number of researchers to use.”

The new XUV source facility is much, much smaller than any that has come before it. It is housed inside a relatively modest lab underground at the University of Tokyo. The bulk of the machine is a 5-by-2-meter vacuum container housing a 100-meter-long ring, or resonator, down which a high-power laser light is stored. At two locations on this coil are pockets of special rare gases that alter characteristics of the passing laser. This results in the two separate beams of XUV and soft X-rays, which are cast onto samples undergoing investigation. Light reflected off the samples is then read by high-speed imaging sensors.

“What is really novel about our approach is that the XUV and soft X-ray pulses are extremely short but occur at very high frequencies, in the region of megahertz, or millions of cycles per second,” said Midorikawa. “For perspective, established XUV facilities that use synchrotron radiation pulses also in the megahertz region have longer bursts which are less suitable for resolving dynamic phenomena. And those that use so-called X-ray-free electron laser sources have short pulses, but offer low frequencies of around 10 hertz to 100 hertz. So our facility offers the best of both worlds, with the added benefit of being only a fraction of the size and with far lower operating costs.”

This new XUV source offers ultrashort pulses, useful for probing fast phenomena, and high frequencies, useful for investigating the structure and chemical properties of matter. This is possible, due to the process that creates the pulses as the laser interacts with the gas. It is called high-order harmonic generation and also because of this, the facility is the first of its kind capable of producing multiple XUV and soft X-ray beams.

“I have been working in the field of XUV generation and application for 30 years. Although high-order harmonic generation brought a breakthrough in this field, the generation efficiency and pulse repetition rate were still insufficient for many applications,” said Midorikawa. “When I proposed the idea of this facility to my colleagues, they were instantly interested and we were able to acquire a suitable budget to complete it. We all hope this will open the door to new research from materials scientists, chemists and biologists who can finally access this amazing and powerful investigative tool.”

###

Journal article

Natsuki Kanda, Tomohiro Imahoko, Koji Yoshida, Akihiro Tanabashi, A. Amani Eilanlou, Yasuo Nabekawa, Tetsumi Sumiyoshi, Makoto Kuwata-Gonokami & Katsumi Midorikawa. Opening a new route to multiport coherent XUV sources via intracavity high-order harmonic generation. Light: Science & Applications volume 9, Article number: 168 (2020).

https://www.nature.com/articles/s41377-020-00405-5

DOI: 10.1038/s41377-020-00405-5

N.K. gratefully acknowledges the support from the special postdoctoral researcher program of RIKEN. K.M. and Y.N. thank the financial support from Grants-in-Aid for Scientific Research Nos. 26247068, 26220606, and 19H05628. This research was supported by the Photon Frontier Network Program; the Special Coordination Funds for Promoting Science and Technology; and the Center of Innovation Science program of the Ministry of Education, Culture, Sports, Science and Technology.

Useful links

Institute for Solid State Physics – http://www.issp.u-tokyo.ac.jp/index_en.html

Photon Science Center – http://www.psc.t.u-tokyo.ac.jp/index-e.php

RIKEN Center for Advanced Photonics – https://www.riken.jp/en/research/labs/rap/

Research Contacts

Professor Katsumi Midorikawa

RIKEN Center for Advanced Photonics

2-1 Hirosawa, Wako, Saitama 351-0198, JAPAN

Tel: +81-48-467-9492

Email: [email protected]

Press Contact

Mr. Rohan Mehra

Division for Strategic Public Relations, The University of Tokyo

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, JAPAN

Email: [email protected]

About the University of Tokyo

The University of Tokyo is Japan’s leading university and one of the world’s top research universities. The vast research output of some 6,000 researchers is published in the world’s top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 4,000 international students. Find out more at http://www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en.

Media Contact
Katsumi Midorikawa
[email protected]

Original Source

https://www.u-tokyo.ac.jp/focus/en/press/z0508_00134.html

Related Journal Article

http://dx.doi.org/10.1038/s41377-020-00405-5

Tags: Atomic PhysicsChemistry/Physics/Materials SciencesMaterialsMolecular PhysicsOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Resilient Order Emerges from Chasing and Splashing

Resilient Order Emerges from Chasing and Splashing

November 5, 2025
blank

Breakthrough in Attosecond Plasma Lens Technology Unveiled

November 5, 2025

Exploring Black Hole Varieties: A Novel Approach Challenges Einstein’s Theory

November 5, 2025

Co-electroreduction of CO and Glyoxal Yields C3 Products

November 5, 2025
Please login to join discussion

POPULAR NEWS

  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1299 shares
    Share 519 Tweet 324
  • Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    313 shares
    Share 125 Tweet 78
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    205 shares
    Share 82 Tweet 51
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Do Steroids Improve Cerebral Palsy-Free Survival in Preemies?

DRG Payments and Unintended Care Quality Effects in China

Mount Sinai Health System Set to Deploy Microsoft Dragon Copilot

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 67 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.