• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New drug may treat and limit progression of Parkinson’s disease

Bioengineer by Bioengineer
July 31, 2017
in Biology
Reading Time: 2 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

BINGHAMTON, NY – Researchers at Binghamton University have developed a new drug that may limit the progression of Parkinson's disease while providing better symptom relief to potentially hundreds of thousands of people with the disease.

Symptoms of Parkinson's disease are commonly managed using a selective dopamine receptor agonists. While these drugs are useful in early-stage Parkinson's, they tend to lose efficacy in later disease stages. As important, currently marketed drugs do not appear to modify disease progression. A research team including Binghamton University psychology professor Chris Bishop and former graduate student David Lindenbach recently employed a preclinical model of Parkinson's disease to compare the effects of the dopamine agonist ropinirole to their new drug, known as D-512. Results demonstrated that D-512 was more efficacious than ropinirole in treating the symptoms of Parkinson's disease while also prolonging the time window in which the animals showed benefits. These findings followed on the heels of prior work by this collaborative group which demonstrated that D-512 may also protect again the progression of Parkinson's disease.

"A major issue for Parkinson's disease patients is the need to take multiple medications, multiple times per day. So we were quite astounded to discover that our new compound, D-512, was superior to the widely-used drug, ropinirole, in terms of maximal symptom relief and duration of action," said Lidenbach.

The researchers also noted that D-512 may have fewer side effects than current medications. When patients take anti-parkinsonian drugs, over time they develop hyperkinetic movements that are hard to control, called dyskinesia. Coupled with D-512's beneficial effects on motor symptoms, they argue that it therapeutic features are highly desirable.

"What you have is a better therapeutic index with our drug versus the current medication. And when you couple that with the fact that it's seemingly multifunctional…then what we have is a compound that just isn't currently available to Parkinson's patients but that we think has a lot of promise," said Bishop.

"D-512 is unique because it not only treats the symptoms of Parkinson's disease, but the molecule itself is an antioxidant," said Lindenbach. "This antioxidant property is important because a major cause of Parkinson's disease appears to be excessive oxidative stress is a small group of movement-facilitating brain cells."

The researchers are currently at a pre-clinical phase. Their goals are two-fold: to understand how D-512 actually provides neural protection and therapeutic relief, while also looking at different models of Parkinson's disease that will translate into the clinic.

"There are some intermediate steps that we may be involved in. I think one of these is determining whether this compound works in later stages to slow down the disease progression. It seems to work very well if you give it really early, before the disease takes hold — but looking at it at later time points and determining whether it can slow the disease down once it's really taken hold, also has important implications," said Bishop.

The paper, "D-512, a novel dopamine D2 / D3 receptor agonist, demonstrates superior anti-parkinsonian efficacy over ropinirole in parkinsonian rats," was published in The British Journal of Pharmacology.

###

Media Contact

Christopher Bishop
[email protected]
607-777-3410
@binghamtonu

http://www.binghamton.edu

http://dx.doi.org/10.1111/bph.13937

Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Fungal Effector Undermines Maize Immunity by Targeting ZmLecRK1

September 12, 2025
Hope for Sahara Killifish’s Rediscovery in Algeria!

Hope for Sahara Killifish’s Rediscovery in Algeria!

September 12, 2025

Dihuang Yinzi Boosts Cognition, Fights Ferroptosis in Mice

September 12, 2025

Non-GMO Yeast Boosts Glutathione via Acrolein Resistance

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nanomedicine: A New Frontier in Targeting Metastasis

Fungal Effector Undermines Maize Immunity by Targeting ZmLecRK1

New Phthalide Compounds Show Promise as Antifungal Agents

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.