• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, November 7, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New discovery settles long-standing debate about photovoltaic materials

Bioengineer by Bioengineer
April 17, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: US Department of Energy, Ames Laboratory

Scientists have theorized that organometallic halide perovskites– a class of light harvesting “wonder” materials for applications in solar cells and quantum electronics– are so promising due to an unseen yet highly controversial mechanism called the Rashba effect. Scientists at the U.S. Department of Energy’s Ames Laboratory have now experimentally proven the existence of the effect in bulk perovskites, using short microwave bursts of light to both produce and then record a rhythm, much like music, of the quantum coupled motion of atoms and electrons in these materials.

Organometallic halide perovskites were first introduced in solar cells about a decade ago. Since then, they have been studied intensely for use in light-harvesting, photonics, and electronic transport devices, because they deliver highly sought-after optical and dielectric properties. They combine the high energy conversion performance of traditional inorganic photovoltaic devices, with the inexpensive material costs and fabrication methods of organic versions.

Research thus far hypothesized that the materials’ extraordinary electronic, magnetic and optical properties are related to the Rashba effect, a mechanism that controls the magnetic and electronic structure and charge carrier lifetimes. But despite recent intense study and debate, conclusive evidence of Rashba effects in bulk organometallic halide perovskites, used in the most efficient perovskite solar cells, remained highly elusive.

Ames Laboratory scientists discovered that evidence by using terahertz light, extremely strong and powerful bursts of light firing at trillions of cycles per second, to switch on or synchronize a “beat” of quantum motion within a material sample; and a second burst of light to “listen” to the beats, triggering an ultrafast receiver to record images of the oscillating state of matter.
This approach overcame the limitations of conventional detection methods, which did not have the resolution or sensitivity to capture the evidence of the Rashba effect hidden in the material’s atomic structure.

“Our discovery settles the debate of the presence of Rashba effects: They do exist in bulk metal halide perovskite materials.” said Jigang Wang, senior scientist at Ames Laboratory and professor of physics at Iowa State University. “By steering quantum motions of atoms and electrons to engineer Rashba split bands, we achieve a significant leap forward for the fundamental discovery of the effect which had been hidden by random local fluctuations, and also open exciting opportunities for spintronic and photovoltaic applications based on quantum control of perovskite materials.”

The research is further discussed in the paper, “Ultrafast Control of Excitonic Rashba Fine Structure by Phonon Coherence in the Metal Halide Perovskite CH3NH3PbI3,” authored by Z. Liu, C. Vaswani, X. Yang, X. Zhao, Y. Yao, Z. Song, D. Cheng, Y. Shi , L. Luo, D.-H. Mudiyanselage, C. Huang, J.-M. Park, R.H.J. Kim, J. Zhao,Y. Yan, K.-M. Ho, and J. Wang; and published in Physical Review Letters.

Wang and his collaborators at Ames Laboratory and Iowa State University Department of Physics and Astronomy were responsible for terahertz quantum beat spectroscopy, model building, and density functional theoretical simulations. High quality perovskite materials were provided by the University of Toledo. Phonon spectra simulations were performed at the University of Science and Technology of China.

###

Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Media Contact
Laura Millsaps
[email protected]

Original Source

https://www.ameslab.gov/news/finding-the-beat-new-discovery-settles-a-long-standing-debate-about-photovoltaic-materials

Tags: Chemistry/Physics/Materials SciencesMaterialsNanotechnology/MicromachinesOptics
Share12Tweet8Share2ShareShareShare2

Related Posts

Heat-Resistant Microbes Uncover Molecular Secrets Behind Nature’s Ultimate Recycling System

Heat-Resistant Microbes Uncover Molecular Secrets Behind Nature’s Ultimate Recycling System

November 7, 2025
Innovative MOF Membrane Electrolyzer Converts Air and Flue Gas CO2 into Pure Formic Acid, Advancing Carbon Neutrality

Innovative MOF Membrane Electrolyzer Converts Air and Flue Gas CO2 into Pure Formic Acid, Advancing Carbon Neutrality

November 7, 2025

Würzburg AI Takes Command: World First Satellite Controlled from Space

November 7, 2025

Innovative MRI Contrast Agent Advances Toward Safer, More Effective Diagnostic Imaging

November 7, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Stinkbug Leg Organ Hosts Symbiotic Fungi That Protect Eggs from Parasitic Wasps

    314 shares
    Share 126 Tweet 79
  • ESMO 2025: mRNA COVID Vaccines Enhance Efficacy of Cancer Immunotherapy

    206 shares
    Share 82 Tweet 52
  • Sperm MicroRNAs: Crucial Mediators of Paternal Exercise Capacity Transmission

    1302 shares
    Share 520 Tweet 325
  • New Study Suggests ALS and MS May Stem from Common Environmental Factor

    138 shares
    Share 55 Tweet 35

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Improving Care Quality: Lean Healthcare Performance Insights

Single-Cell Study Reveals Seminoma Stemness, Metastasis

More Children, Shorter Lifespan? Clear Evidence from the Great Finnish Famine

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.