• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Thursday, December 4, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New discovery may lead to effective and natural treatment for Parkinson’s disease

Bioengineer by Bioengineer
June 4, 2020
in Health
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Certain hormone-like compounds boost dopamine levels in the brain

IMAGE

Credit: McLean Hospital

Study Highlights

  • The Nurr1 protein maintains the health of neurons that produce dopamine and die off during the progression of Parkinson’s disease.
  • Hormone-like compounds called prostaglandin A1 and E1 bind to and activate Nurr1.
  • Prostaglandin A1 or E1 treatment lessened symptoms in a mouse model of Parkinson’s disease.

Investigators have identified two molecules naturally produced by the body that stimulate the production of dopamine, the molecule that is in short supply in the brains of patients with Parkinson’s disease. Stimulating dopamine production may help reverse the progression of the disease. The research was led by scientists at McLean Hospital in collaboration with scientists at Nanyang Technical University, Singapore, and published in the journal Nature Chemical Biology.

The team designed the study based on the knowledge that a protein called Nurr1 is key for maintaining the health of neurons that produce dopamine, which helps control a person’s movements and emotions. It is thought that decreased Nurr1 effectiveness may lead to a decrease in dopamine levels, which then results in the development of Parkinson’s disease.

“We thought that small molecules that can activate Nurr1 may be promising drug candidates to treat Parkinson’s disease. After many years of research, in 2015, we found three FDA-approved drugs that bind to Nurr1 and activate it,” explained senior author Kwang-Soo Kim, PhD, director of the Molecular Neurobiology Lab at McLean Hospital and a professor of psychiatry at Harvard Medical School. “This finding prompted us to hypothesize that there may be natural molecules–that is, endogenous ligands–that also bind to Nurr1 but don’t have side effects.”

When the scientists looked for such molecules in various tissues from mice, they found hormone-like compounds called prostaglandin A1 and E1 as promising candidates that bound to and activated the Nurr1 protein. The collaborative team also created a model depicting the structure of these molecules when they are bound to the Nurr1 protein by performing X-ray co-crystallography and nuclear magnetic resonance studies. This information will be critical as treatment strategies that target Nurr1 are optimized.

The investigators showed that physiological concentrations of prostaglandin A1 or E1 in the nanomolar ranges can protect dopamine neurons against neurotoxins. Next, the investigators found that when mouse models induced to develop symptoms similar to Parkinson’s disease were treated with prostaglandin A1 or E1, the animals’ motor skills and functions improved significantly without any signs of side effects, such as abnormal dyskinesia-like behavior. Analyses of the animals’ brains revealed that the treatment protected the dopamine-producing brain cells from dying and made them produce higher levels of dopamine.

“Although we showed that these molecules can correct Parkinson’s-like symptoms in animal models in a neuroprotective manner, further studies are essential to determine whether they can work in human clinical trials,” said Kim.

###

Facebook: https://www.facebook.com/McLeanHospital

Twitter: https://twitter.com/McLeanHospital

Media Contact
Laura Neves
[email protected]

Original Source

https://www.mcleanhospital.org/news/new-discovery-may-lead-effective-and-natural-treatment-parkinsons-disease

Related Journal Article

http://dx.doi.org/10.1038/s41589-020-0553-6

Tags: Medicine/HealthneurobiologyParkinson
Share12Tweet8Share2ShareShareShare2

Related Posts

Metformin-Alogliptin Combo vs. Monotherapy in Diabetes

December 3, 2025

Botanical Extracts’ Antibacterial Activity Boosted by Enhancers

December 3, 2025

Global Guidelines for Shared Decision-Making in Valvular Heart Disease

December 3, 2025

Hidradenitis Suppurativa Remission Achieved Using Bacteriophage Therapy

December 3, 2025
Please login to join discussion

POPULAR NEWS

  • New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    New Research Unveils the Pathway for CEOs to Achieve Social Media Stardom

    204 shares
    Share 82 Tweet 51
  • Scientists Uncover Chameleon’s Telephone-Cord-Like Optic Nerves, A Feature Missed by Aristotle and Newton

    120 shares
    Share 48 Tweet 30
  • Neurological Impacts of COVID and MIS-C in Children

    107 shares
    Share 43 Tweet 27
  • MoCK2 Kinase Shapes Mitochondrial Dynamics in Rice Fungal Pathogen

    69 shares
    Share 28 Tweet 17

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Boosting Cancer Immunotherapy by Targeting DNA Repair

Evaluating eGFR Equations in Chinese Children

Metformin-Alogliptin Combo vs. Monotherapy in Diabetes

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 69 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.