• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Tuesday, September 16, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Chemistry

New discovery has important implications for treating common eye disease

Bioengineer by Bioengineer
February 20, 2020
in Chemistry
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

IMAGE

Credit: Dr Sarah Doyle, Trinity College Dublin.


Scientists from Trinity College Dublin have made an important discovery with implications for those living with a common, debilitating eye disease (age-related macular degeneration, AMD) that can cause blindness.

They have discovered that the molecule TLR2, which recognises chemical patterns associated with infection in the body, also seems to play an important role in the development of retinal degeneration.

AMD is the most common form of central visual blindness in adults, with approximately 70,000 Irish people living with the condition. People with AMD may have difficulty recognising faces, reading, watching television and driving as their central retina degenerates.

Aging is the greatest risk factor for development of AMD, with one in four people over the age of 75 living with the condition. To date, no pharmaceutical interventions are available to prevent the progression of disease. Patients living with dry AMD are generally advised to make lifestyle changes such as stopping smoking and improving diet and exercise regimes.

Dr Sarah Doyle, assistant professor of immunology at Trinity, who led the study which has just been published in leading journal Cell Reports, said:

“The lack of approved therapies for AMD is mainly because the factors involved in triggering the disease are not very well understood. Understanding and identifying early molecular events that may trigger dry AMD will allow us to develop a more targeted approach to therapy. In this case, we believe that regulating the activity of TLR2 may, over time, help to prevent the progression of dry AMD.”

Two biological processes involved in AMD are the uncontrolled “oxidative stress” that results in the formation of bleach-like chemicals in the retina, and the laying down of a protein called complement, that “tags” whatever it touches for elimination.

In this study the scientists implicated TLR2 as a critical bridge between oxidative damage and complement-mediated retinal degeneration. TLR2, which is found on the surface of cells, is part of the immune system because it is known to sense infection through recognising chemical danger signals that are found on microorganisms like bacteria and yeast.

Once TLR2 is activated by a danger signal it triggers a signal cascade, which is a bit like a cellular assembly line, with information about the cells immediate environment passed to our genes, which then respond with an inflammatory response.

“In the case of the eye, TLR2 appears to act as a sensor of oxidative-stress, recognising a chemical pattern that is generated during oxidation, rather than infection, and triggering a signal cascade that ends in promoting the laying down of complement,” said first author on the paper, Dr Kelly Mulfaul, from Trinity.

Dr Sarah Doyle added:

“A function for TLR2 has not previously been reported in retinal neurodegenerative disease pathology but it is likely to play an important role, because when we remove TLR2 from our experimental model systems we reduce the level of complement and this has the effect of protecting cells that are essential for vision from dying.

“With the continual increase in life expectancy outpacing the rate at which drugs for age-related conditions are developed new avenues of therapy are badly needed, so the fact that blocking this single protein can have such a protective effect in the eye is a particularly exciting discovery.”

###

This research was supported with funding from BrightFocus Foundation USA, Science Foundation Ireland, Health Research Board Ireland and the Irish Research Council.

Media Contact
Sarah Doyle
[email protected]
353-189-63011

Original Source

https://www.tcd.ie/news_events/articles/new-discovery-has-important-implications-for-treating-common-eye-disease/

Related Journal Article

http://dx.doi.org/10.1016/j.celrep.2020.01.064

Tags: BiochemistryCell BiologyMedicine/HealthOphthalmology
Share12Tweet8Share2ShareShareShare2

Related Posts

blank

Quantum Sensors Built to Withstand Extreme Pressures

September 15, 2025
Princeton Chemistry’s Hammes-Schiffer Unveils First-Principles Method for Molecular Polaritons

Princeton Chemistry’s Hammes-Schiffer Unveils First-Principles Method for Molecular Polaritons

September 15, 2025

Smoking or Vaping Could Elevate Your Risk of Developing Diabetes, New Study Finds

September 15, 2025

Metasurface Revolutionizes Atomic Magnetometers with Enhanced Compactness and Sensitivity

September 15, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    154 shares
    Share 62 Tweet 39
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    66 shares
    Share 26 Tweet 17
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Ba-Doped MgSnO₃: A Breakthrough Electrode for Supercapacitors

TUG1 Suppression Boosts Immunity and Lenvatinib in Liver Cancer

SFU Unveils Canada’s Fastest Academic Supercomputer Following $80 Million Upgrade

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.