• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
Friday, January 27, 2023
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • CONTACT US
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Health

New carbon nanotube-based foam promises superior protection against concussions

Bioengineer by Bioengineer
November 30, 2022
in Health
Reading Time: 3 mins read
0
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

CONTACT: Ramathasan Thevamaran, [email protected], (608) 262-5724

nanotube helmet

Credit: University of Wisconsin–Madison/Joel Hallberg

CONTACT: Ramathasan Thevamaran, [email protected], (608) 262-5724

NEW CARBON NANOTUBE-BASED FOAM PROMISES SUPERIOR PROTECTION AGAINST CONCUSSIONS

MADISON – Developed by University of Wisconsin–Madison engineers, a lightweight, ultra-shock-absorbing foam could vastly improve helmets designed to protect people from strong blows.

The new material exhibits 18 times higher specific energy absorption than the foam currently used in U.S. military combat helmet liners, as well as having much greater strength and stiffness, which could allow it to provide improved impact protection.

Physical forces from an impact can inflict trauma in the brain, causing a concussion. But helmet materials that are better at absorbing and dissipating this kinetic energy before it reaches the brain could help mitigate, or even prevent, concussions and other traumatic brain injuries.

The researchers’ industry partner, helmet manufacturer Team Wendy, is experimenting with the new material in a helmet liner prototype to investigate its performance in real-world scenarios.

“This new material holds tremendous potential for energy absorption and thus impact mitigation, which in turn should significantly lower the likelihood of brain injury,” says Ramathasan Thevamaran, a UW–Madison professor of engineering physics who led the research.

The team detailed its advance in a study published recently in the journal Extreme Mechanics Letters.

The new material is an architected, vertically aligned carbon nanotube foam. To create it, the researchers started with carbon nanotubes — carbon cylinders just one atom thick in each layer — as the basic building blocks.

Carbon nanotubes already have exceptional mechanical properties, and to further enhance their performance, the researchers designed a material with unique structural features across multiple length scales. The material’s novel architecture consists of numerous micrometer-scale cylinder structures, each made of many carbon nanotubes.

Discovering the new foam’s ultimate optimal design parameters — such as the thickness of the cylinders, their inner diameter and the gap between adjacent cylinders — was no small task. The researchers systematically conducted experiments where they varied each parameter and studied all the possible combinations.

“So we took a few different thicknesses, and then tested that with every diameter size and every possible gap, and so on,” Thevamaran says. “Altogether, we looked at 60 different combinations and conducted three tests on each sample, so 180 experiments went into this study.”

They uncovered a clear winner. Cylinders with a thickness of 10 micrometers or less, arranged close to each other, produced a foam with the best shock-absorbing properties.

“I expected the overall properties to improve due to our interactive architecture, but I was surprised by how dramatically the properties were enhanced when the cylinders were 10 micrometers thick,” Thevamaran says. “It was due to an unusual size effect that emerged in the process-structure-property relations. The effect was very pronounced, and it turned out to be quite advantageous for the properties we were targeting.”

In addition, the new material can remain robustly shock-absorbing at both very high and very low temperatures because of its carbon nanotube building blocks, making it useful for applications in a wide range of extreme environments.

The researchers, including Komal Chawla, UW–Madison postdoctoral research associate, and graduate students Abhishek Gupta and Abhijeet S. Bhardwaj, are patenting their innovation through the Wisconsin Alumni Research Foundation. The university-industry collaboration was part of the UW¬–Madison-led PANTHER program, an interdisciplinary research initiative that is developing solutions to enable better detection and prevention of traumatic brain injuries.

Grants from the U.S. Office of Naval Research (N000142112044) and the Army Research Office (W911NF2010160) supported the research.

###

— Adam Malecek, [email protected]



Journal

Extreme Mechanics Letters

DOI

10.1016/j.eml.2022.101899

Method of Research

Experimental study

Article Title

Superior mechanical properties by exploiting size-effects and multiscale interactions in hierarchically architected foams

Article Publication Date

7-Oct-2022

Share12Tweet8Share2ShareShareShare2

Related Posts

Reduction in Burnout and Depression Symptoms through Transcendental Meditation

Transcendental Meditation effective in reducing burnout and depression symptoms in physicians

January 27, 2023
Penn Nursing's Amy Lisanti

Science advisory: Advocating for developmental care for infants with complex congenital heart disease

January 26, 2023

Infants born preterm reach similar BMI as their peers born term by adolescence, according to a meta-analysis of 253,810 individuals from 11 countries

January 26, 2023

UK soft drink taxes associated with decreased obesity in girls

January 26, 2023

POPULAR NEWS

  • Jean du Terrail, Senior Machine Learning Scientist at Owkin

    Nature Medicine publishes breakthrough Owkin research on the first ever use of federated learning to train deep learning models on multiple hospitals’ histopathology data

    63 shares
    Share 25 Tweet 16
  • First made-in-Singapore antibody-drug conjugate (ADC) approved to enter clinical trials

    57 shares
    Share 23 Tweet 14
  • Metal-free batteries raise hope for more sustainable and economical grids

    41 shares
    Share 16 Tweet 10
  • One-pot reaction creates versatile building block for bioactive molecules

    37 shares
    Share 15 Tweet 9

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

New species of microalgae discovered

New technology may help inform brain stimulation

Discovery of new form of carbon, called long-range ordered porous carbon (LOPC)

Subscribe to Blog via Email

Enter your email address to subscribe to this blog and receive notifications of new posts by email.

Join 42 other subscribers
  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In