• HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
Friday, September 12, 2025
BIOENGINEER.ORG
No Result
View All Result
  • Login
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
  • HOME
  • NEWS
  • EXPLORE
    • CAREER
      • Companies
      • Jobs
        • Lecturer
        • PhD Studentship
        • Postdoc
        • Research Assistant
    • EVENTS
    • iGEM
      • News
      • Team
    • PHOTOS
    • VIDEO
    • WIKI
  • BLOG
  • COMMUNITY
    • FACEBOOK
    • INSTAGRAM
    • TWITTER
No Result
View All Result
Bioengineer.org
No Result
View All Result
Home NEWS Science News Biology

New cable-free brain imaging method may take social neuroscience to the next level

Bioengineer by Bioengineer
May 28, 2019
in Biology
Reading Time: 3 mins read
0
IMAGE
Share on FacebookShare on TwitterShare on LinkedinShare on RedditShare on Telegram

Researchers at Osaka University develop a cable-free recording method that can be used to measure brain activity associated with social behavior in mice

IMAGE

Credit: Professor Takeharu Nagai

Osaka, Japan – Existing electrophysiological and fluorescence-based brain imaging techniques in mice are generally invasive, require head fixes or cables, and are not suitable for long-term recordings. While there have been recent advances in imaging methods in freely moving animals, these are major limitations for researchers that are interested in the brain correlates of social behaviors.

Researchers at Osaka University have developed a new method to record brain activity simultaneously in multiple, freely moving mice. The method is based on a recent bioluminescence-based indicator of membrane voltage called “LOTUS-V”. The LOTUS-V bioluminescent probe is genetically encoded, which means that it is delivered to target cells non-invasively via a common gene expression system (the adeno-associated virus). Its signal is derived from cell membrane voltage changes, which reflect brain activity.

“The LOTUS-V method reported brain activity in freely moving mice with a good sensitivity and without motion artifacts,” says corresponding author Takeharu Nagai. “More importantly, it could measure dynamically changing brain activity in the primary visual cortex during social interactions.”

LOTUS-V was applied to cells in the primary visual cortex; this area was targeted because it is known to respond to locomotor activity and visual stimulation. LOTUS-V signal changes reflected neural activity in response to visual stimuli and locomotor activity, as well as during interactions with other mice; neural activity was significantly higher when a mouse approached others. Furthermore, the LOTUS-V signal was not affected by leaky signals emitted from other, nearby mice, which means that it faithfully reflected in vivo brain activity.

“Our method successfully detected activity of the superficial layer of the primary visual cortex–this is about 300 μm deep,” says Shigenori Inagaki, first author of the study. “It will be important to test its applicability to recording in deeper brain regions.”

While the temporal resolution of the LOTUS-V method was sufficient to investigate the dynamics of brain activity triggered by specific events, it is not yet superior to that of the fiber-based method.

“These results could be really exciting for social neurobiologists,” Nagai says. “It is minimally invasive, doesn’t require cables or head fixes, and is suitable for long-term recordings in freely moving animals, meaning it could be useful in a broad range of other research fields, too.”

###

The article, “Imaging local brain activity of multiple freely moving mice sharing the same environment”, was published in Scientific Reports at DOI: https://doi.org/10.1038/s41598-019-43897-x

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan’s leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan’s most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university’s ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: https://resou.osaka-u.ac.jp/en/top

Media Contact
Saori Obayashi
[email protected]

Related Journal Article

http://dx.doi.org/10.1038/s41598-019-43897-x

Tags: BiologySocial/Behavioral ScienceTechnology/Engineering/Computer Science
Share12Tweet7Share2ShareShareShare1

Related Posts

blank

Fungal Effector Undermines Maize Immunity by Targeting ZmLecRK1

September 12, 2025
Hope for Sahara Killifish’s Rediscovery in Algeria!

Hope for Sahara Killifish’s Rediscovery in Algeria!

September 12, 2025

Dihuang Yinzi Boosts Cognition, Fights Ferroptosis in Mice

September 12, 2025

Non-GMO Yeast Boosts Glutathione via Acrolein Resistance

September 12, 2025
Please login to join discussion

POPULAR NEWS

  • blank

    Breakthrough in Computer Hardware Advances Solves Complex Optimization Challenges

    152 shares
    Share 61 Tweet 38
  • New Drug Formulation Transforms Intravenous Treatments into Rapid Injections

    116 shares
    Share 46 Tweet 29
  • Physicists Develop Visible Time Crystal for the First Time

    64 shares
    Share 26 Tweet 16
  • A Laser-Free Alternative to LASIK: Exploring New Vision Correction Methods

    49 shares
    Share 20 Tweet 12

About

We bring you the latest biotechnology news from best research centers and universities around the world. Check our website.

Follow us

Recent News

Nanomedicine: A New Frontier in Targeting Metastasis

Fungal Effector Undermines Maize Immunity by Targeting ZmLecRK1

New Phthalide Compounds Show Promise as Antifungal Agents

  • Contact Us

Bioengineer.org © Copyright 2023 All Rights Reserved.

Welcome Back!

Login to your account below

Forgotten Password?

Retrieve your password

Please enter your username or email address to reset your password.

Log In
No Result
View All Result
  • Homepages
    • Home Page 1
    • Home Page 2
  • News
  • National
  • Business
  • Health
  • Lifestyle
  • Science

Bioengineer.org © Copyright 2023 All Rights Reserved.